On the class of square Petrie matrices induced by cyclic permutations

Let n≥2 be an integer and let P={1,2,…,n,n+1}. Let Zp denote the finite field {0,1,2,…,p−1}, where p≥2 is a prime. Then every map σ on P determines a real n×n Petrie matrix Aσ which is known to contain information on the dynamical properties such as topological entropy and the Artin-Mazur zeta func...

Full description

Saved in:
Bibliographic Details
Main Author: Bau-Sen Du
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204309026
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let n≥2 be an integer and let P={1,2,…,n,n+1}. Let Zp denote the finite field {0,1,2,…,p−1}, where p≥2 is a prime. Then every map σ on P determines a real n×n Petrie matrix Aσ which is known to contain information on the dynamical properties such as topological entropy and the Artin-Mazur zeta function of the linearization of σ. In this paper, we show that if σ is a cyclic permutation on P, then all such matrices Aσ are similar to one another over Z2 (but not over Zp for any prime p≥3) and their characteristic polynomials over Z2 are all equal to ∑k=0nxk. As a consequence, we obtain that if σ is a cyclic permutation on P, then the coefficients of the characteristic polynomial of Aσ are all odd integers and hence nonzero.
ISSN:0161-1712
1687-0425