Effects of HIP on Microstructure and Mechanical Properties of LMD Fe36Mn21Cr1815NiAl10 High-Entropy Alloy
To reduce costs, a cobalt-free FeMnCrNi-based HEA has been proposed. Further investigation into the mechanical properties of the Fe36Mn21Cr18Ni15Al10 alloy is essential to expand its application potential. In this study, a cobalt-free Fe36Mn21Cr18Ni15Al10 HEA was fabricated using LMD, and the effect...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/14/12/1452 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To reduce costs, a cobalt-free FeMnCrNi-based HEA has been proposed. Further investigation into the mechanical properties of the Fe36Mn21Cr18Ni15Al10 alloy is essential to expand its application potential. In this study, a cobalt-free Fe36Mn21Cr18Ni15Al10 HEA was fabricated using LMD, and the effects of HIP on its microstructure and mechanical properties were investigated. Results indicated that the as-printed specimen exhibited a dual-phase structure consisting of BCC and FCC phases, with the B2 phase dispersed as fine blocks. After HIP treatment, the content of the FCC phase significantly increased, displaying a lamellar distribution between the BCC phases, with secondary block-like B2 phases forming within the BCC matrix. The HIP process enhanced the density of the high-entropy alloy to 98.2%, while the tensile strength at 25 °C increased to 903.9 MPa. Additionally, the post-fracture elongation improved to 17.4%, thereby increasing the potential for industrial applications of HEAs. |
|---|---|
| ISSN: | 2075-4701 |