Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate
Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dy...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Radiology Research and Practice |
Online Access: | http://dx.doi.org/10.1155/2014/871619 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832566797487833088 |
---|---|
author | Pedro A. Gómez Damián Jonathan I. Sperl Martin A. Janich Oleksandr Khegai Florian Wiesinger Steffen J. Glaser Axel Haase Markus Schwaiger Rolf F. Schulte Marion I. Menzel |
author_facet | Pedro A. Gómez Damián Jonathan I. Sperl Martin A. Janich Oleksandr Khegai Florian Wiesinger Steffen J. Glaser Axel Haase Markus Schwaiger Rolf F. Schulte Marion I. Menzel |
author_sort | Pedro A. Gómez Damián |
collection | DOAJ |
description | Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues. |
format | Article |
id | doaj-art-034f4f8c113f4ba599fef4df23732b1b |
institution | Kabale University |
issn | 2090-1941 2090-195X |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Radiology Research and Practice |
spelling | doaj-art-034f4f8c113f4ba599fef4df23732b1b2025-02-03T01:03:01ZengWileyRadiology Research and Practice2090-19412090-195X2014-01-01201410.1155/2014/871619871619Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]PyruvatePedro A. Gómez Damián0Jonathan I. Sperl1Martin A. Janich2Oleksandr Khegai3Florian Wiesinger4Steffen J. Glaser5Axel Haase6Markus Schwaiger7Rolf F. Schulte8Marion I. Menzel9GE Global Research, 85748 Garching bei München, GermanyGE Global Research, 85748 Garching bei München, GermanyGE Global Research, 85748 Garching bei München, GermanyGE Global Research, 85748 Garching bei München, GermanyGE Global Research, 85748 Garching bei München, GermanyChemistry, Technische Universität München, 85748 Garching bei München, GermanyMedical Engineering, Technische Universität München, 85748 Garching bei München, GermanyNuclear Medicine, Technische Universität München, 81675 Munich, GermanyGE Global Research, 85748 Garching bei München, GermanyGE Global Research, 85748 Garching bei München, GermanyHyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.http://dx.doi.org/10.1155/2014/871619 |
spellingShingle | Pedro A. Gómez Damián Jonathan I. Sperl Martin A. Janich Oleksandr Khegai Florian Wiesinger Steffen J. Glaser Axel Haase Markus Schwaiger Rolf F. Schulte Marion I. Menzel Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate Radiology Research and Practice |
title | Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate |
title_full | Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate |
title_fullStr | Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate |
title_full_unstemmed | Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate |
title_short | Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate |
title_sort | multisite kinetic modeling of 13c metabolic mr using 1 13c pyruvate |
url | http://dx.doi.org/10.1155/2014/871619 |
work_keys_str_mv | AT pedroagomezdamian multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT jonathanisperl multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT martinajanich multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT oleksandrkhegai multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT florianwiesinger multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT steffenjglaser multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT axelhaase multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT markusschwaiger multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT rolffschulte multisitekineticmodelingof13cmetabolicmrusing113cpyruvate AT marionimenzel multisitekineticmodelingof13cmetabolicmrusing113cpyruvate |