Spinodal decomposition in Bjorken flow

The QCD first-order phase transition at large baryon densities is expected to proceed by spinodal decomposition. This spinodal phase is likely to leave its signatures on the experimental observables measured in heavy-ion collision experiments. Identifying these signatures requires phenomenological m...

Full description

Saved in:
Bibliographic Details
Main Authors: Kapusta Joseph, Singh Mayank, Welle Thomas
Format: Article
Language:English
Published: EDP Sciences 2025-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2025/01/epjconf_sqm2024_06005.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The QCD first-order phase transition at large baryon densities is expected to proceed by spinodal decomposition. This spinodal phase is likely to leave its signatures on the experimental observables measured in heavy-ion collision experiments. Identifying these signatures requires phenomenological models integrating surface effects resulting from the phase transition into the hydrodynamical description of the expanding quark gluon plasma. We write the equations of relativistic hydrodynamics with spinodal decomposition and solve it in on a background of Bjorken flow relevant for heavy-ion collisions.
ISSN:2100-014X