New proof and generalization of some results on translated sums over k-almost primes
A sequence $\mathcal{A}$ of strictly positive integers is said to be primitive if none of its terms divides the others, Erdős conjectured that the sum $f(\mathcal{A},0)\le f(\mathbb{N}_{1},0),$ where $\mathbb{N}_{1}$ is the sequence of prime numbers and $f(\mathcal{A},h)=\sum _{a\,\in \,\mathcal{A}}...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2024-05-01
|
| Series: | Comptes Rendus. Mathématique |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.552/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|