ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک

سابقه و هدف: یکی از نیازهای مهم در برنامه‌ریزی تولید و فرآوری گیاهان دارویی به منظور حصول عملکرد بالا و با کیفیت مطلوب، ارزیابی اولیه خصوصیات فیزیکی و شیمیایی خاک منطقه است که می‌توان با اجتناب از کاربرد غیرضروری آزمایشات متنوع خاکشناسی، هزینه تولید را به حداقل کاهش داد. مرزه تابستانه (Satureja hort...

Full description

Saved in:
Bibliographic Details
Main Authors: حسین صبوری فرد, عظیم قاسم نژاد, خدایار همتی, ابوطالب هزارجریبی, محمودرضا بهرامی
Format: Article
Language:fas
Published: Gorgan University of Agricultural Sciences and Natural Resources 2019-08-01
Series:Pizhūhish/hā-yi tulīd-i giyāhī
Subjects:
Online Access:https://jopp.gau.ac.ir/article_4657_fe0310531ea4116749e9dc48f4a248a5.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586618948550656
author حسین صبوری فرد
عظیم قاسم نژاد
خدایار همتی
ابوطالب هزارجریبی
محمودرضا بهرامی
author_facet حسین صبوری فرد
عظیم قاسم نژاد
خدایار همتی
ابوطالب هزارجریبی
محمودرضا بهرامی
author_sort حسین صبوری فرد
collection DOAJ
description سابقه و هدف: یکی از نیازهای مهم در برنامه‌ریزی تولید و فرآوری گیاهان دارویی به منظور حصول عملکرد بالا و با کیفیت مطلوب، ارزیابی اولیه خصوصیات فیزیکی و شیمیایی خاک منطقه است که می‌توان با اجتناب از کاربرد غیرضروری آزمایشات متنوع خاکشناسی، هزینه تولید را به حداقل کاهش داد. مرزه تابستانه (Satureja hortensis L) از جمله گیاهان دارویی پرکاربرد است که میزان اسانس و ترکیبات آن شاخص کیفی گیاه محسوب می‌شود. امروزه با ورود مدل‌های رگرسیونی چند متغیره و مدل‌های شبکه مصنوعی در تحقیقات، بسیاری از روابط پیچیده موجود در طبیعت قابل درک است. از این رو ضرورت برآورد عملکرد اسانس گیاه مرزه با استفاده از روش‌های سریع، کم هزینه و با دقتی قابل قبول احساس می‌گردد.مواد و روش‌ها: این پژوهش بصورت طرح کاملاً تصادفی، در سه تکرار و بصورت گلدانی انجام شد. از مناطق مختلف شهرستان نیشابور 53 نمونه خاک تهیه و پارامترهای زودیافت آن که شامل 1-درصد شن، 2-درصد سیلت، 3-درصد رس، 4-مواد آلی، 5-اسیدیته، 6-شوری، 7-فسفر، 8-پتاسیم، 9-نیتروژن، 10-درصد کربن می‌باشد، در آزمایشگاه اندازه‌گیری و نتایج اولیه بدست آمد. تقریباً 90 روز پس از کشت بذور در گلدان‌های حاوی نمونه‌های مختلف خاکی، نمونه‌گیری از آن‌ها صورت گرفت. سپس نمونه‌ها به مدت 24 ساعت در آون 40 درجه سانتی‌گراد قرار گرفتند تا خشک شوند. در نهایت رابطه‌های بین عملکرد اسانس گیاه مرزه و پارامترهای زودیافت خاک با تجزیه شبکه عصبی مصنوعی و با استفاده از نرم افزار Matlab7.9 مشخص گردید. برای بدست آوردن حساس‌ترین پارامترها، تجزیه حساسیت به روش ضریب بدون بعد حساسیت محاسبه گردید. بطوری که اگر مقدار ضریب حساسیت پارامتری از 1/0 بیش‌تر باشد، آن پارامتر جز پارامترهای حساس مدل محسوب ‌شد.یافته‌ها: شبکه عصبی مصنوعی از الگوی شبکه عصبی مصنوعی انسان شبیه‌سازی شده است، به گونه‌ای که می‌تواند پس از آموزش، پارامترهای خروجی مورد نظر را با اعمال پارامترهای ورودی برآورد نماید. در این پژوهش، از ساختار شبکه عصبی پرسپترون با الگوریتم آموزشی مارکوآت لونبرگ استفاده شد تا عملکرد اسانس از پارامترهای زودیافت خاک همچون بافت خاک، مواد آلی و عناصر پرمصرف برآورد شود. بالا بودن مقادیر R2 و پایین بودن مقادیر RMSE یاد شده بیانگر نزدیک بودن داده‌های پیش‌بینی با داده‌های اندازه‌گیری و دقت بالای مدل در برآورد عملکرد اسانس گیاه مرزه تابستانه است. بر این اساس پارامترهای بافت خاک(درصد شن، سیلت و رس) و کربن آلی، ماده آلی، شوری، پتاسیم و اسیدیته خاک به ترتیب به عنوان حساس‌ترین پارامترها انتخاب گردید. نتیجه‌گیری: نتایج نشان داد که مدل‌های عصبی ایجاد شده قادر نبودند عملکرد اسانس در گیاه مرزه تابستانه را با حداکثر دقت (R2= 0.50) برآورد نمایند. از بین 8 مدل برازش یافته یک مدل مبتنی بر متغیرهای مستقل EC + بافت + کربن + ماده آلی + پتاسیم + pH عملکرد بهتری داشت، با این وجود تعداد بالای عوامل ورودی این مدل محدودیت تلقی می‌شود. از آنجایی که این تحقیق جزء اولین بررسی‌ها در مورد برآورد عملکرد اسانس گیاهان دارویی بود، لذا ادامه تحقیق و بررسی در این خصوص و همچنین پیش‌بینی عملکرد سایر گیاهان دارویی به این روش پیشنهاد می‌گردد.
format Article
id doaj-art-00b5cb991126408c8abb8c8ef25f43d8
institution Kabale University
issn 2322-2050
2322-2778
language fas
publishDate 2019-08-01
publisher Gorgan University of Agricultural Sciences and Natural Resources
record_format Article
series Pizhūhish/hā-yi tulīd-i giyāhī
spelling doaj-art-00b5cb991126408c8abb8c8ef25f43d82025-01-25T06:55:33ZfasGorgan University of Agricultural Sciences and Natural ResourcesPizhūhish/hā-yi tulīd-i giyāhī2322-20502322-27782019-08-01262475810.22069/jopp.2019.14351.22884657ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاکحسین صبوری فرد0عظیم قاسم نژاد1خدایار همتی2ابوطالب هزارجریبی3محمودرضا بهرامی4دانش آموخته کارشناسی ارشد گروه علوم باغبانی دانشگاه علوم کشاورزی ومنابع طبیعی گرگانهیات علمی، دانشیار گروه علوم باغبانی دانشگاه علوم کشاورزی و منابع طبیعی گرگانرئیس دانشکده تولید گیاهی-دانشگاه علوم کشاورزی و منابع طبیعی گرگاندانشیار گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی گرگانمدرس دپارتمان مهندسی تولیدات گیاهی، دانشکده کشاورزی، دانشگاه فنی و حرفه‌ای خراسان رضویسابقه و هدف: یکی از نیازهای مهم در برنامه‌ریزی تولید و فرآوری گیاهان دارویی به منظور حصول عملکرد بالا و با کیفیت مطلوب، ارزیابی اولیه خصوصیات فیزیکی و شیمیایی خاک منطقه است که می‌توان با اجتناب از کاربرد غیرضروری آزمایشات متنوع خاکشناسی، هزینه تولید را به حداقل کاهش داد. مرزه تابستانه (Satureja hortensis L) از جمله گیاهان دارویی پرکاربرد است که میزان اسانس و ترکیبات آن شاخص کیفی گیاه محسوب می‌شود. امروزه با ورود مدل‌های رگرسیونی چند متغیره و مدل‌های شبکه مصنوعی در تحقیقات، بسیاری از روابط پیچیده موجود در طبیعت قابل درک است. از این رو ضرورت برآورد عملکرد اسانس گیاه مرزه با استفاده از روش‌های سریع، کم هزینه و با دقتی قابل قبول احساس می‌گردد.مواد و روش‌ها: این پژوهش بصورت طرح کاملاً تصادفی، در سه تکرار و بصورت گلدانی انجام شد. از مناطق مختلف شهرستان نیشابور 53 نمونه خاک تهیه و پارامترهای زودیافت آن که شامل 1-درصد شن، 2-درصد سیلت، 3-درصد رس، 4-مواد آلی، 5-اسیدیته، 6-شوری، 7-فسفر، 8-پتاسیم، 9-نیتروژن، 10-درصد کربن می‌باشد، در آزمایشگاه اندازه‌گیری و نتایج اولیه بدست آمد. تقریباً 90 روز پس از کشت بذور در گلدان‌های حاوی نمونه‌های مختلف خاکی، نمونه‌گیری از آن‌ها صورت گرفت. سپس نمونه‌ها به مدت 24 ساعت در آون 40 درجه سانتی‌گراد قرار گرفتند تا خشک شوند. در نهایت رابطه‌های بین عملکرد اسانس گیاه مرزه و پارامترهای زودیافت خاک با تجزیه شبکه عصبی مصنوعی و با استفاده از نرم افزار Matlab7.9 مشخص گردید. برای بدست آوردن حساس‌ترین پارامترها، تجزیه حساسیت به روش ضریب بدون بعد حساسیت محاسبه گردید. بطوری که اگر مقدار ضریب حساسیت پارامتری از 1/0 بیش‌تر باشد، آن پارامتر جز پارامترهای حساس مدل محسوب ‌شد.یافته‌ها: شبکه عصبی مصنوعی از الگوی شبکه عصبی مصنوعی انسان شبیه‌سازی شده است، به گونه‌ای که می‌تواند پس از آموزش، پارامترهای خروجی مورد نظر را با اعمال پارامترهای ورودی برآورد نماید. در این پژوهش، از ساختار شبکه عصبی پرسپترون با الگوریتم آموزشی مارکوآت لونبرگ استفاده شد تا عملکرد اسانس از پارامترهای زودیافت خاک همچون بافت خاک، مواد آلی و عناصر پرمصرف برآورد شود. بالا بودن مقادیر R2 و پایین بودن مقادیر RMSE یاد شده بیانگر نزدیک بودن داده‌های پیش‌بینی با داده‌های اندازه‌گیری و دقت بالای مدل در برآورد عملکرد اسانس گیاه مرزه تابستانه است. بر این اساس پارامترهای بافت خاک(درصد شن، سیلت و رس) و کربن آلی، ماده آلی، شوری، پتاسیم و اسیدیته خاک به ترتیب به عنوان حساس‌ترین پارامترها انتخاب گردید. نتیجه‌گیری: نتایج نشان داد که مدل‌های عصبی ایجاد شده قادر نبودند عملکرد اسانس در گیاه مرزه تابستانه را با حداکثر دقت (R2= 0.50) برآورد نمایند. از بین 8 مدل برازش یافته یک مدل مبتنی بر متغیرهای مستقل EC + بافت + کربن + ماده آلی + پتاسیم + pH عملکرد بهتری داشت، با این وجود تعداد بالای عوامل ورودی این مدل محدودیت تلقی می‌شود. از آنجایی که این تحقیق جزء اولین بررسی‌ها در مورد برآورد عملکرد اسانس گیاهان دارویی بود، لذا ادامه تحقیق و بررسی در این خصوص و همچنین پیش‌بینی عملکرد سایر گیاهان دارویی به این روش پیشنهاد می‌گردد.https://jopp.gau.ac.ir/article_4657_fe0310531ea4116749e9dc48f4a248a5.pdfزیست تودهبافت خاکگیاهان داروییعملکرد
spellingShingle حسین صبوری فرد
عظیم قاسم نژاد
خدایار همتی
ابوطالب هزارجریبی
محمودرضا بهرامی
ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
Pizhūhish/hā-yi tulīd-i giyāhī
زیست توده
بافت خاک
گیاهان دارویی
عملکرد
title ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
title_full ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
title_fullStr ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
title_full_unstemmed ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
title_short ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
title_sort ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک
topic زیست توده
بافت خاک
گیاهان دارویی
عملکرد
url https://jopp.gau.ac.ir/article_4657_fe0310531ea4116749e9dc48f4a248a5.pdf
work_keys_str_mv AT ḥsynṣbwryfrd ạrzyạbyḵạrậyymdlhạysẖbḵhʿṣbymṣnwʿydrbrậwrdʿmlḵrdạsạnsgyạhmrzhtạbstạnhbrạsạswyzẖgyhạyzwdyạftkẖạḵ
AT ʿẓymqạsmnzẖạd ạrzyạbyḵạrậyymdlhạysẖbḵhʿṣbymṣnwʿydrbrậwrdʿmlḵrdạsạnsgyạhmrzhtạbstạnhbrạsạswyzẖgyhạyzwdyạftkẖạḵ
AT kẖdạyạrhmty ạrzyạbyḵạrậyymdlhạysẖbḵhʿṣbymṣnwʿydrbrậwrdʿmlḵrdạsạnsgyạhmrzhtạbstạnhbrạsạswyzẖgyhạyzwdyạftkẖạḵ
AT ạbwṭạlbhzạrjryby ạrzyạbyḵạrậyymdlhạysẖbḵhʿṣbymṣnwʿydrbrậwrdʿmlḵrdạsạnsgyạhmrzhtạbstạnhbrạsạswyzẖgyhạyzwdyạftkẖạḵ
AT mḥmwdrḍạbhrạmy ạrzyạbyḵạrậyymdlhạysẖbḵhʿṣbymṣnwʿydrbrậwrdʿmlḵrdạsạnsgyạhmrzhtạbstạnhbrạsạswyzẖgyhạyzwdyạftkẖạḵ