Showing 101 - 112 results of 112 for search 'proof theory', query time: 0.03s Refine Results
  1. 101

    Synchronization of General Complex Networks with Hybrid Couplings and Unknown Perturbations by Xinsong Yang, Shuang Ai, Tingting Su, Ancheng Chang

    Published 2013-01-01
    “…Based on Lyapunov stability theory, integral inequality Barbalat lemma, and Schur Complement lemma, rigorous proofs are given for synchronization of the complex networks. …”
    Get full text
    Article
  2. 102

    Existence of Solutions for Boundary Value Problem of a Caputo Fractional Difference Equation by Zhiping Liu, Shugui Kang, Huiqin Chen, Jianmin Guo, Yaqiong Cui, Caixia Guo

    Published 2015-01-01
    “…We use Schauder fixed point theorem to deduce the existence of solutions. The proofs are based upon the theory of discrete fractional calculus. …”
    Get full text
    Article
  3. 103

    Fractal Control and Synchronization of the Discrete Fractional SIRS Model by Miao Ouyang, Yongping Zhang, Jian Liu

    Published 2020-01-01
    “…The discrete SIRS models with the Caputo deltas sense and the theories of fractional calculus and fractal theory provide a reasonable and sensible perspective of studying infectious disease phenomenon. …”
    Get full text
    Article
  4. 104

    General existence principles for nonlocal boundary value problems with φ-Laplacian and their applications by Ravi P. Agarwal, Donal O'Regan, Svatoslav Stanek

    Published 2006-01-01
    “…The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form (φ(x′))′=f1(t,x,x′)+f2(t,x,x′)F1x+f3(t,x,x′)F2x,α(x)=0, β(x)=0, where fj satisfy local Carathéodory conditions on some [0,T]×𝒟j⊂ℝ2, fj are either regular or have singularities in their phase variables (j=1,2,3), Fi:C1[0,T]→C0[0,T](i=1,2), and α,β:C1[0,T]→ℝ are continuous. The proofs are based on the Leray-Schauder degree theory and use regularization and sequential techniques. …”
    Get full text
    Article
  5. 105

    Optimality and stability of symmetric evolutionary games with applications in genetic selection by Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu

    Published 2014-12-01
    “…In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. …”
    Get full text
    Article
  6. 106

    Face morphing attacks and face image quality: The effect of morphing and the unsupervised attack detection by quality by Biying Fu, Naser Damer

    Published 2022-09-01
    “…Previous studies touched on the issue of the quality of morphing attack images, however, with the main goal of quantitatively proofing the realistic appearance of the produced morphing attacks. …”
    Get full text
    Article
  7. 107

    On expansions for nonlinear systems Error estimates and convergence issues by Beauchard, Karine, Le Borgne, Jérémy, Marbach, Frédéric

    Published 2023-01-01
    “…Inspired by quantum mechanics, we introduce a new mixed expansion, designed to isolate the role of a time-invariant drift from the role of a time-varying perturbation.Second, in the context of nonlinear ordinary differential equations driven by regular vector fields, we give rigorous proofs of error estimates between the exact solution and finite approximations of the formal expansions. …”
    Get full text
    Article
  8. 108

    Venereal Diseases Treatment for Merauke’s Marind (Marind-Anim) Tribe in the Dutch Colonial Period by Rosmaida Sinaga, Hafnita Sari Dewi Lubis, Yushar Tanjung, Lister Eva Simangunsong

    Published 2023-01-01
    “…This article provides some proofs that influenced the increasing number of Marind-Anim people who suffering from venereal diseases. …”
    Get full text
    Article
  9. 109

    General existence principles for nonlocal boundary value problems with <mml:math alttext="$PHI$"> <mml:mi>&#x03C6;</mml:mi> </mml:math>-laplacian and their appl...

    Published 2006-01-01
    “…<p>The paper presents general existence principles which can be used for a large class of nonlocal boundary value problems of the form <mml:math alttext="$(phi(x'))'=f_1(t,x,x')+f_2(t,x,x')F_1x+f_3(t,x,x')F_2x$,$alpha(x)=0$"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x03C6;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B1;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math>, <mml:math alttext="$eta(x)=0$"> <mml:mi>&#x03B2;</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math>, where <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> satisfy local Carathéodory conditions on some <mml:math alttext="$[0,T]imesmathcal{D}_jsubset R^2$"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x00D7;</mml:mo> <mml:msub> <mml:mi>&#x1D49F;</mml:mi> <mml:mi>j</mml:mi> </mml:msub> <mml:mo>&#x2282;</mml:mo> <mml:msup> <mml:mi>&#x211D;</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math>, <mml:math alttext="$f_j$"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:math> are either regular or have singularities in their phase variables <mml:math alttext="$(j=1,2,3)$"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>, <mml:math alttext="$F_i: C^1[0,T] ightarrow C^0[0,T]$ $(i=1,2)$"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>, and <mml:math alttext="$alpha,eta:C^1[0,T] ightarrowR$"> <mml:mrow> <mml:mi>&#x03B1;</mml:mi> <mml:mo>,</mml:mo> <mml:mi>&#x03B2;</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>&#x2192;</mml:mo> <mml:mi>&#x211D;</mml:mi> </mml:mrow> </mml:math> are continuous. The proofs are based on the Leray-Schauder degree theory and use regularization and sequential techniques. …”
    Get full text
    Article
  10. 110
  11. 111

    Transfers for ramified covering maps in homology and cohomology by Marcelo A. Aguilar, Carlos Prieto

    Published 2006-01-01
    “…With our definition of the homology transfer we can give simpler proofs of the properties of the known transfer and of some new ones. …”
    Get full text
    Article
  12. 112

    Holling-Tanner Predator-Prey Model with State-Dependent Feedback Control by Jin Yang, Guangyao Tang, Sanyi Tang

    Published 2018-01-01
    “…In this paper, we propose a novel Holling-Tanner model with impulsive control and then provide a detailed qualitative analysis by using theories of impulsive dynamical systems. The Poincaré map is first constructed based on the phase portraits of the model. …”
    Get full text
    Article