Search alternatives:
pain » main (Expand Search)
tree » three (Expand Search)
Showing 1 - 8 results of 8 for search 'pain research random tree algorithm', query time: 0.10s Refine Results
  1. 1

    Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives by Marco Cascella, Daniela Schiavo, Arturo Cuomo, Alessandro Ottaiano, Francesco Perri, Renato Patrone, Sara Migliarelli, Elena Giovanna Bignami, Alessandro Vittori, Francesco Cutugno

    Published 2023-01-01
    “…Concerning methods, early studies were conducted by machine learning algorithms such as support vector machine, decision tree, and random forest classifiers. …”
    Get full text
    Article
  2. 2

    Prediction of Corona-Virus Using Deep Learning by Laith Al-Ali

    Published 2022-12-01
    “…Artificial intelligence provides many tools for data analysis, statistical analysis, and intelligent research. In this paper, we focus on predicting COVID-19 infection, using Artificial Neural Networks (ANN), random forests and decision trees, to effectively analyze medical datasets, based on the most common and acute symptoms, such as cough, fever, headache, diarrhea, living in infected areas Pain and shortness of breath. …”
    Get full text
    Article
  3. 3

    AN INTELLIGENT POSTOPERATIVE CHRONIC PAIN PREDICTION SYSTEM (I-POCPP) by Elif Kartal, Fatma Önay Koçoğlu, Zeki Özen, İlkim Ecem Emre, Gürcan Güngör, Pervin Sutaş Bozkurt

    Published 2022-07-01
    “…Machine learning and its applications provide significant contributions to pain research. The aim of this study is to predict the POCP status of patients based on perioperative data by developing an “Intelligent POCP Prediction System (I-POCPP)” using the best performing machine learning algorithm. …”
    Get full text
    Article
  4. 4

    Linguistic Markers of Pain Communication on X (Formerly Twitter) in US States With High and Low Opioid Mortality: Machine Learning and Semantic Network Analysis by ShinYe Kim, Winson Fu Zun Yang, Zishan Jiwani, Emily Hamm, Shreya Singh

    Published 2025-05-01
    “…Six machine learning algorithms (random forest, k-nearest neighbor, decision tree, naive Bayes, logistic regression, and support vector machine) were applied to predict state-level opioid mortality risk based on linguistic features derived from Linguistic Inquiry and Word Count. …”
    Get full text
    Article
  5. 5

    Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms by Yicheng Wang, Yicheng Wang, Yicheng Wang, Chuan-Yang Wu, Hui-Xian Fu, Jian-Cheng Zhang, Jian-Cheng Zhang, Jian-Cheng Zhang

    Published 2025-01-01
    “…Eight machine learning algorithms were applied to the training set to construct the model, including logistic regression (LR), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), extreme gradient boosting (XGBoost), classification and regression tree (CART), k-nearest neighbors (KNN), and neural network (NNET). …”
    Get full text
    Article
  6. 6
  7. 7
  8. 8