Showing 121 - 140 results of 1,223 for search 'model screening algorithm', query time: 0.23s Refine Results
  1. 121
  2. 122

    An Emotion-Driven Vocal Biomarker-Based PTSD Screening Tool by Thomas F. Quatieri, Jing Wang, James R. Williamson, Richard DeLaura, Tanya Talkar, Nancy P. Solomon, Stefanie E. Kuchinsky, Megan Eitel, Tracey Brickell, Sara Lippa, Kristin J. Heaton, Douglas S. Brungart, Louis French, Rael Lange, Jeffrey Palmer, Hayley Reynolds

    Published 2024-01-01
    “…<italic>Results:</italic> Speech from low-arousal and positive-valence regions provide the highest discrimination for PTSD. Our model achieved an AUC (area under the curve) of 0.80 in detecting PCL-C ratings, outperforming models with no emotion filtering (AUC &#x003D; 0.68). …”
    Get full text
    Article
  3. 123
  4. 124

    Construction of a predictive model for cognitive impairment among older adults in Northwest China by Yu Wang, Ni Wang, Yanjie Zhao, Xiaoyan Wang, Yuqin Nie, Liping Ding

    Published 2025-07-01
    “…Model performance was evaluated on the basis of the area under the curve, sensitivity, specificity, accuracy, F1 score, precision, and recall.ResultsA total of 12,332 older adults were recruited and screened with the Mini-Mental State Examination Scale. …”
    Get full text
    Article
  5. 125

    Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets by Kuoyuan Cheng, Laura Martin‐Sancho, Lipika R Pal, Yuan Pu, Laura Riva, Xin Yin, Sanju Sinha, Nishanth Ulhas Nair, Sumit K Chanda, Eytan Ruppin

    Published 2021-10-01
    “…We next applied the GEM‐based metabolic transformation algorithm to predict anti‐SARS‐CoV‐2 targets that counteract the virus‐induced metabolic changes. …”
    Get full text
    Article
  6. 126
  7. 127

    Research Progress in the Screening of Antimicrobial Substances Based on Machine Learning by HOU Jiangxia, JIANG Jinhui, WANG Chenxin, WANG Lan, SHI Liu, WU Wenjin, GUO Xiaojia, CHEN Sheng, CHEN Lang, CAO Feng, SUN Li, ZHOU Zhi

    Published 2025-07-01
    “…As a branch of artificial intelligence, machine learning algorithms have demonstrated exceptional capabilities in processing large-scale data, feature extraction, and model optimization, leading to their increasing application in the screening of antimicrobial substances. …”
    Get full text
    Article
  8. 128

    ALGEBRAIC MODELS OF STRIP LINES IN A MULTILAYER DIELECTRIC MEDIUM by A. N. Kovalenko, A. N. Zhukov

    Published 2018-06-01
    “…On the basis of the developed algorithm we created a set of computer programs for calculating the propagation constants, the coefficients of the current density decomposition in terms of Chebyshev weighted polynomials and the wave impedances of screened strip lines of various types: a single and connected microstrip lines (with side and face communication); coplanar strip line; slit line and coplanar waveguide. …”
    Get full text
    Article
  9. 129
  10. 130

    Explainable Artificial Intelligence Driven Segmentation for Cervical Cancer Screening by Niruthikka Sritharan, Nishaanthini Gnanavel, Prathushan Inparaj, Dulani Meedeniya, Pratheepan Yogarajah

    Published 2025-01-01
    “…This represents a pioneering application of explainability techniques in the context of cervical cancer screening. Among the classification models explored, including fine-tuned variants of VGGNet and XceptionNet, VGG16-Adapted128 achieved the highest performance, marked by an accuracy of 0.94, precision of 0.94, recall of 0.94, and an F1 score of 0.94. …”
    Get full text
    Article
  11. 131

    A study on predicting the risk of coronary artery disease in OSAHS patients based on a four-variable screening tool potential predictive model and its correlation with the severity... by Yanli Yao, Yu Li, Yulan Chen, Xuan Qiu, Gulimire Aimaiti, Ayiguzaili Maimaitimin

    Published 2025-06-01
    “…ObjectiveThis study aims to evaluate the potential association between the four-variable screening tool (the 4 V) potential predictive model in predicting coronary artery disease (CAD) risk in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) and its correlation with the severity of coronary atherosclerosis, as measured by the Gensini scoring system.Methods1197 OSAHS patients with suspected CAD who were hospitalized in the First Affiliated Hospital of Xinjiang Medical University between March 2020 and February 2024 were selected. …”
    Get full text
    Article
  12. 132

    All-Cause Mortality Risk in Elderly Patients with Femoral Neck and Intertrochanteric Fractures: A Predictive Model Based on Machine Learning by Min A, Liu Y, Fu M, Hou Z, Wang Z

    Published 2025-05-01
    “…Cox proportional hazards regression is used to explore the association between fractures type and mortality. Boruta algorithm was used to screen the risk factors related to death. …”
    Get full text
    Article
  13. 133

    Development of machine learning models to predict the risk of fungal infection following flexible ureteroscopy lithotripsy by Haofang Zhang, Changbao Xu, Chenge Hu, Yunlai Xue, Daoke Yao, Yifan Hu, Ankang Wu, Miao Dai, Hang Ye

    Published 2025-04-01
    “…Our study aimed to construct a machine learning algorithm predictive model to predict the risk of fungal infection following F-URL. …”
    Get full text
    Article
  14. 134

    Prediction of pulmonary embolism by an explainable machine learning approach in the real world by Qiao Zhou, Ruichen Huang, Xingyu Xiong, Zongan Liang, Wei Zhang

    Published 2025-01-01
    “…To address this, we employed an artificial intelligence–based machine learning algorithm (MLA) to construct a robust predictive model for PE. …”
    Get full text
    Article
  15. 135
  16. 136

    Machine learning to improve HIV screening using routine data in Kenya by Jonathan D. Friedman, Jonathan M. Mwangi, Kennedy J. Muthoka, Benedette A. Otieno, Jacob O. Odhiambo, Frederick O. Miruka, Lilly M. Nyagah, Pascal M. Mwele, Edmon O. Obat, Gonza O. Omoro, Margaret M. Ndisha, Davies O. Kimanga

    Published 2025-04-01
    “…We generated a stratified 60‐20‐20 train‐validate‐test split to assess model generalizability. We trained four machine learning algorithms including logistic regression, Random Forest, AdaBoost and XGBoost. …”
    Get full text
    Article
  17. 137

    GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach by Diego Bravo, Juan Frias, Felipe Vera, Juan Trejos, Carlos Martínez, Martín Gómez, Fabio González, Eduardo Romero

    Published 2025-01-01
    “…The dataset covers 22 anatomical landmarks in the stomach and includes an additional category for unqualified images, making it a valuable resource for AI model development. By providing a robust public dataset and baseline deep learning models for image and sequence classification, GastroHUN serves as a benchmark for future research and aids in the development of more effective algorithms.…”
    Get full text
    Article
  18. 138

    Deep Learning-Based Draw-a-Person Intelligence Quotient Screening by Shafaat Hussain, Toqeer Ehsan, Hassan Alhuzali, Ali Al-Laith

    Published 2025-06-01
    “…The primary objective of our research is to streamline the IQ screening process for psychologists by leveraging deep learning algorithms. …”
    Get full text
    Article
  19. 139
  20. 140