Showing 1,081 - 1,100 results of 1,223 for search 'model screening algorithm', query time: 0.16s Refine Results
  1. 1081

    Transforming heart transplantation care with multi-omics insights by Zhengbang Zou, Jianing Han, Zhiyuan Zhu, Shanshan Zheng, Xinhe Xu, Sheng Liu

    Published 2025-07-01
    “…Single–cell omics technologies and machine learning algorithms further resolve cellular heterogeneity and improve predictive modeling, thereby enhancing the clinical translatability of multi-omics data. …”
    Get full text
    Article
  2. 1082

    Geographic variation in secondary metabolites contents and their relationship with soil mineral elements in Pleuropterus multiflorum Thunb. from different regions by Yaling Yang, Siman Wang, Ruibin Bai, Feng Xiong, Yan Jin, Hanwei Liu, Ziyi Wang, Chengyuan Yang, Yi Yu, Apu Chowdhury, Chuanzhi Kang, Jian Yang, Lanping Guo

    Published 2024-09-01
    “…Conversely, a positive correlation was found between the contents of elements Na, Ce, Ti, and physcion and THSG-5, 2 components that exhibited higher levels in Deqing. Furthermore, an RF algorithm was employed to establish an interrelationship model, effectively forecasting the abundance of the majority of differential metabolites in HSW samples based on the content data of soil mineral elements. …”
    Get full text
    Article
  3. 1083

    Advancement of artificial intelligence based treatment strategy in type 2 diabetes: A critical update by Aniruddha Sen, Palani Selvam Mohanraj, Vijaya Laxmi, Sumel Ashique, Rajalakshimi Vasudevan, Afaf Aldahish, Anupriya Velu, Arani Das, Iman Ehsan, Anas Islam, Sabina Yasmin, Mohammad Yousuf Ansari

    Published 2025-06-01
    “…At the same time, the rapidly increasing role of AI in diabetes care is woven into the story, mainly targeting how insulin therapy can be modified and personalized through algorithms and predictive modelling. It leaves a deep review of their pre-existing synergies, which helps understand how collaborative opportunities will unlock the future of T2DM care. …”
    Get full text
    Article
  4. 1084

    Problems and perspectives of family doctors training on the undergraduate stage by Yu. M. Kolesnik, V. D. Syvolap, N. S. Mikhaylovskaya, T.O. Kulinich

    Published 2013-04-01
    “…For working on practical part of family doctors basic skills it is planned to organize educational and training center at the family ambulatory, and its equipment with the necessary visual means, phantoms, models, simulators, diagnostic, medical apparatus and instruments. …”
    Get full text
    Article
  5. 1085

    Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics by Yi Ding, Zhaiyue Xu, Wenjing Hu, Peng Deng, Mian Ma, Jiandong Wu

    Published 2025-07-01
    “…The eight-gene GloMICS score outperformed 95 published prognostic models (C-index 0.74–0.66 across TCGA, CGGA and GEO). …”
    Get full text
    Article
  6. 1086

    Integrative multi-omics analysis reveals the role of toll-like receptor signaling in pancreatic cancer by Jie Peng, Jiaao Sun, Youfeng Yu, Qihang Yuan, Yong Zhang

    Published 2025-01-01
    “…In the process of building prognostic models, we screened 33 core genes related to the prognosis of pancreatic cancer, and combined a series of machine learning algorithms to build the prognosis model of pancreatic cancer. …”
    Get full text
    Article
  7. 1087

    Machine Learning–Based Prediction of Early Complications Following Surgery for Intestinal Obstruction: Multicenter Retrospective Study by Pinjie Huang, Jirong Yang, Dizhou Zhao, Taojia Ran, Yuheng Luo, Dong Yang, Xueqin Zheng, Shaoli Zhou, Chaojin Chen

    Published 2025-03-01
    “…ConclusionsWe have developed and validated a generalizable random forest model to predict postoperative early complications in patients undergoing intestinal obstruction surgery, enabling clinicians to screen high-risk patients and implement early individualized interventions. …”
    Get full text
    Article
  8. 1088

    Ferroptosis-related hub genes and immune cell dynamics as diagnostic biomarkers in age-related macular degeneration by Jinquan Chen, Zhao Long, Dandan Shi, Qian Zhang, H. Peng

    Published 2025-08-01
    “…Consequently, the macular was selected as the primary focus of the study. Subsequent screening of these 19 genes using LASSO regression, Support Vector Machine (SVM), and Random Forest algorithms identified four hub genes: FADS1, TFAP2A, AKR1C3, and TTPA. …”
    Get full text
    Article
  9. 1089

    Novel Approaches for the Early Detection of Glaucoma Using Artificial Intelligence by Marco Zeppieri, Lorenzo Gardini, Carola Culiersi, Luigi Fontana, Mutali Musa, Fabiana D’Esposito, Pier Luigi Surico, Caterina Gagliano, Francesco Saverio Sorrentino

    Published 2024-10-01
    “…By automating standard screening procedures, these models have demonstrated promise in distinguishing between glaucomatous and healthy eyes, forecasting the course of the disease, and possibly lessening the workload of physicians. …”
    Get full text
    Article
  10. 1090

    Design and predict the potential of imidazole-based organic dyes in dye-sensitized solar cells using fingerprint machine learning and supported by a web application by Mohamed M. Elsenety

    Published 2024-11-01
    “…Among of these, Deep Neural Network models of MLPRegressor algorithm based on the daylight fingerprint shows a significant coefficient of determination combined with the lowest errors. …”
    Get full text
    Article
  11. 1091

    On the construction of a large-scale database of AI-assisted annotating lung ventilation-perfusion scintigraphy for pulmonary embolism (VQ4PEDB) by Amir Jabbarpour, Eric Moulton, Eric Moulton, Sanaz Kaviani, Sanaz Kaviani, Siraj Ghassel, Wanzhen Zeng, Wanzhen Zeng, Ramin Akbarian, Ramin Akbarian, Anne Couture, Aubert Roy, Richard Liu, Yousif A. Lucinian, Nuha Hejji, Nuha Hejji, Sukainah AlSulaiman, Sukainah AlSulaiman, Farnaz Shirazi, Farnaz Shirazi, Eugene Leung, Eugene Leung, Sierra Bonsall, Samir Arfin, Bruce G. Gray, Ran Klein, Ran Klein, Ran Klein, Ran Klein

    Published 2025-07-01
    “…The annotated data was then ingested into Deep Lake, a SQL-based database, for AI model training. Quality assurance involved manual inspections and algorithmic validation.ResultsA query of The Ottawa Hospital's data warehouse followed by initial data screening yielded 2,137 V/Q studies with 2,238 successfully retrieved as DICOM studies. …”
    Get full text
    Article
  12. 1092

    Prostate cancer and metabolic syndrome: exploring shared signature genes through integrative analysis of bioinformatics and clinical data by Maomao Guo, Sudong Liang, Zhenghui Guan, Jingcheng Mao, Zhibin Xu, Wenchao Zhao, Hao Bian, Jianfeng Zhu, Jiangping Wang, Xin Jin, Yuan Xia

    Published 2025-05-01
    “…In this study, we utilized bioinformatics and machine learning techniques to analyze public datasets and validated our findings using clinical specimens from our center to identify common signature genes between PCa and MS. We began by screening differentially expressed genes (DEGs) and module genes through Linear models for microarray analysis (Limma) and Weighted Gene Co-expression Network Analysis (WGCNA) of four microarray datasets from the GEO database (PCa: GSE8511, GSE32571, and GSE104749; MS: GSE98895). …”
    Get full text
    Article
  13. 1093

    Identification of diagnostic biomarkers and dissecting immune microenvironment with crosstalk genes in the POAG and COVID-19 nexus by Changfan Peng, Long Hu, Wanwen Su, Xin Hu

    Published 2025-07-01
    “…Concurrently, gene expression datasets from GEO (POAG: GSE27276; COVID-19: GSE171110, GSE152418) were used to identify 57 crosstalk genes (CGs) via differential expression analysis. Machine learning algorithms (LASSO, SVM-RFE, Random Forest) were applied to screen POAG diagnostic biomarkers from CGs, followed by construction of transcription factor (TF)-microRNA (miRNA)-protein-compound regulatory networks and consensus clustering to characterize COVID-19 immune microenvironment subtypes. …”
    Get full text
    Article
  14. 1094
  15. 1095

    The Role of AI in Nursing Education and Practice: Umbrella Review by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Fuad H Abuadas, Joel Somerville

    Published 2025-04-01
    “…First, ethical and social implications were consistently highlighted, with studies emphasizing concerns about data privacy, algorithmic bias, transparency, accountability, and the necessity for equitable access to AI technologies. …”
    Get full text
    Article
  16. 1096

    A secure and efficient user selection scheme in vehicular crowdsensing by Min Zhang, Qing Ye, Zhimin Yuan, Kaihuan Deng

    Published 2025-05-01
    “…The model uses PCA for data dimensionality reduction to eliminate redundant information and then employs LSTM to process time series data, capture long-term dependencies for more accurate user credit prediction, screen high-quality users, and improve perceived data quality. …”
    Get full text
    Article
  17. 1097

    Association of urinary metal elements with sarcopenia and glucose metabolism abnormalities: Insights from NHANES data using machine learning approaches by Xinmin Jin, Lei Li, Xiaoyan Hu, Pengfei Bi, Song Zhang, Qian Wang, Zhongwei Xiao, Hua Yang, Tongtong Liu, Lifang Feng, Jinhuan Wang

    Published 2025-07-01
    “…Objectives: This study aimed to explore the association between urinary metal element levels and sarcopenia across different glucose metabolic states using multi-omics clustering algorithms and machine learning models, and to identify diagnostic biomarkers. …”
    Get full text
    Article
  18. 1098

    Transmitted drug resistance in the CFAR network of integrated clinical systems cohort: prevalence and effects on pre-therapy CD4 and viral load. by Art F Y Poon, Jeannette L Aldous, W Christopher Mathews, Mari Kitahata, James S Kahn, Michael S Saag, Benigno Rodríguez, Stephen L Boswell, Simon D W Frost, Richard H Haubrich

    Published 2011-01-01
    “…Aggregate effects of mutations by drug class were estimated by fitting linear models of pVL and CD4 on weighted sums over TDR mutations according to the Stanford HIV Database algorithm. …”
    Get full text
    Article
  19. 1099

    Combining Near-Infrared Spectroscopy and Chemometrics for Rapid Recognition of an Hg-Contaminated Plant by Bang-Cheng Tang, Hai-Yan Fu, Qiao-Bo Yin, Zeng-Yan Zhou, Wei Shi, Lu Xu, Yuan-Bin She

    Published 2016-01-01
    “…The NIRS measurements of impacted sample powders were collected in the mode of reflectance. The DUPLEX algorithm was utilized to split the NIRS data into representative training and test sets. …”
    Get full text
    Article
  20. 1100

    Focusing on scRNA-seq-Derived T Cell-Associated Genes to Identify Prognostic Signature and Immune Microenvironment Status in Low-Grade Glioma by Jiayu Wen, Qiaoyi Huang, Jiuxiu Yao, Wei Wei, Zehui Li, Huiqin Zhang, Surui Chang, Hui Pei, Yu Cao, Hao Li

    Published 2023-01-01
    “…In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. …”
    Get full text
    Article