Showing 521 - 540 results of 1,223 for search 'model screening algorithm', query time: 0.14s Refine Results
  1. 521

    Risk Assessment of High-Voltage Power Grid Under Typhoon Disaster Based on Model-Driven and Data-Driven Methods by Xiao Zhou, Jiang Li

    Published 2025-02-01
    “…Additionally, a power grid failure risk assessment model is built based on Light Gradient Boosting Machine (LightGBM), and the Borderline-Smoothing Algorithm (BSA) is used for the modeling of power grid faults. …”
    Get full text
    Article
  2. 522

    Machine Learning Model for Predicting Pathological Invasiveness of Pulmonary Ground‐Glass Nodules Based on AI‐Extracted Radiomic Features by Guozhen Yang, Yuanheng Huang, Huiguo Chen, Weibin Wu, Yonghui Wu, Kai Zhang, Xiaojun Li, Jiannan Xu, Jian Zhang

    Published 2025-08-01
    “…This study aimed to develop a machine learning (ML)–based model using artificial intelligence (AI)‐extracted CT radiomic features to predict the invasiveness of GGNs. …”
    Get full text
    Article
  3. 523

    In-Silico discovery of novel cephalosporin antibiotic conformers via ligand-based pharmacophore modelling and de novo molecular design by Rayhan Chowdhury, Samia Akter Saima, Md. Al Amin, Md. Kawsar Habib, Ramisa Binti Mohiuddin, Ali Mohamod Wasaf Hasan, Roksana Khanam, Shahin Mahmud

    Published 2025-09-01
    “…The generated pharmacophore model, with a score of 0.9268, was utilized to screen a drug library, initially assessing 19 compounds. …”
    Get full text
    Article
  4. 524

    Development of a predictive model for risk factors of multidrug-resistant bacterial pneumonia in critically ill post-neurosurgical patients by Aixiang Hu, Dayan Ma, Yanni Lei, Fangqiang Li, Xi Wang, Yuewei Zhang

    Published 2025-06-01
    “…However, existing prediction frameworks exhibit limitations in elucidating the relative importance of risk factors, thereby impeding precise clinical decision-making and individualized patient management.ObjectiveTo evaluate the performance of six ensemble classification algorithms and three single classification algorithms in predicting MDR-BP risk factors among neurosurgical postoperative critically ill patients, identify the optimal predictive model, and determine key influential factors.MethodsWe conducted a retrospective study involving 750 neurosurgical patients admitted to a neurosurgery center at a tertiary hospital in Beijing between January 2020 and December 2023. …”
    Get full text
    Article
  5. 525

    Anti-EBV: Artificial intelligence driven predictive modeling for repurposing drugs as potential antivirals against Epstein-Barr virus by Hiteshi Vaidya, Sakshi Gautam, Manoj Kumar

    Published 2025-01-01
    “…The top-performing model was used to screen approved drugs from DrugBank, identifying potential repurposed drugs namely arzoxifene, succimer, abemaciclib and many more. …”
    Get full text
    Article
  6. 526
  7. 527

    MF-ShipNet: a multi-feature weighted fusion and PCA-SVM model for ship detection in remote sensing images by Jianfeng Li, Yibing Yang, Liutong Yang, Yang Zhao, Qinghua Luo, Chenxu Wang

    Published 2025-12-01
    “…To solve this problem, this paper proposes a multi-feature weighted fusion and PCA-SVM model for ship detection in remote sensing images. …”
    Get full text
    Article
  8. 528

    Proteomic signatures and predictive modeling of cadmium-associated anxiety in middle-aged and elderly populations: an environmental exposure association study by Sheng Wan, Yong Yang, Qihan Zhao, Zelong Xing, Jie Li, Hao Gao, Yinghui Yin, Zhenzhong Liu, Qiwen Chen, Maoqin Tian, Xinxin Shi, Ziyue Ji, Shaoxin Huang

    Published 2025-05-01
    “…Machine learning techniques, specifically XGBoost and LASSO, were employed to identify biomarkers that were subsequently validated through mediation analysis and animal experiments, allowing for the screening of key protein signatures. Finally, clinical variables were integrated to construct a comprehensive model, which was then thoroughly evaluated. …”
    Get full text
    Article
  9. 529

    Predicting the risk of postoperative gastrointestinal bleeding in patients with Type A aortic dissection based on an interpretable machine learning model by Lin Li, Xing Yang, Wei Guo, Wenxian Wu, Meixia Guo, Huanhuan Li, Xueyan Wang, Siyu Che

    Published 2025-05-01
    “…Predictors were screened using LASSO regression, and four ML algorithms—Random Forest (RF), K-nearest neighbor (KNN), Support Vector Machines (SVM), and Decision Tree (DT)—were employed to construct models for predicting postoperative GIB risk. …”
    Get full text
    Article
  10. 530

    Assessment of prostate cancer aggressiveness through the combined analysis of prostate MRI and 2.5D deep learning models by Yalei Wang, Yuqing Xin, Baoqi Zhang, Fuqiang Pan, Xu Li, Manman Zhang, Yushan Yuan, Lei Zhang, Peiqi Ma, Bo Guan, Yang Zhang

    Published 2025-06-01
    “…Models were constructed using the LightGBM algorithm: a radiomic feature model, a deep learning feature model, and a combined model integrating radiomic and deep learning features. …”
    Get full text
    Article
  11. 531

    Assessment of food toxicology by Alexander Gosslau

    Published 2016-09-01
    “…Integration of food toxicology data obtained throughout biochemical and cell-based in vitro, animal in vivo and human clinical settings has enabled the establishment of alternative, highly predictable in silico models. These systems utilize a combination of complex in vitro cell-based models with computer-based algorithms. …”
    Get full text
    Article
  12. 532
  13. 533

    Prediction of recurrence after surgery for pituitary adenoma using machine learning- based models: systematic review and meta-analysis by Ibrahim Mohammadzadeh, Bardia Hajikarimloo, Behnaz Niroomand, Nasira Faizi, Pooya Eini, Mohammad Amin Habibi, Alireza Mohseni, Mohammadmahdi Sabahi, Abdulrahman Albakr, Michael Karsy, Hamid Borghei-Razavi

    Published 2025-07-01
    “…For the comparison between Logistic Regression (LR) and non-LR algorithms, LR-based algorithms exhibited numerically higher AUC and sensitivity; however, these differences were not statistically significant. …”
    Get full text
    Article
  14. 534
  15. 535
  16. 536

    Identification of developmental and reproductive toxicity of biocides in consumer products using ToxCast bioassays data and machine learning models by Donghyeon Kim, Siyeol Ahn, Jinhee Choi

    Published 2025-08-01
    “…This study aimed to identify ToxCast bioassays relevant to DART and develop machine learning models to screen biocides in consumer products for their DART potential. …”
    Get full text
    Article
  17. 537

    Construction and analysis of a prognostic risk scoring model for gastric cancer anoikis-related genes based on LASSO regression by Ai CHEN, Xiaowei CHEN, Yanan WANG, Xiaobing SHEN

    Published 2024-08-01
    “…ResultsSix key ARGs (VCAN, FEN1, BRIP1, CNTN1, P3H2, DUSP1) were screened out based on LASSO regression analysis, and a prognostic risk scoring model was constructed. …”
    Get full text
    Article
  18. 538

    Construction and Validation of a Hospital Mortality Risk Model for Advanced Elderly Patients with Heart Failure Based on Machine Learning by Shang S, Wei M, Lv H, Liang X, Lu Y, Tang B

    Published 2025-06-01
    “…Shuai Shang,1,2,* Meng Wei,1,2,* Huasheng Lv,1,2,* Xiaoyan Liang,1,2 Yanmei Lu,1,2 Baopeng Tang1,2 1Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China; 2Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China*These authors contributed equally to this workCorrespondence: Baopeng Tang, Department of Cardiac Pacing and Electrophysiology, Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi Zone, Urumqi, People’s Republic of China, Email tangbaopeng1111@163.com Yanmei Lu, Department of Cardiac Pacing and Electrophysiology, Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi Zone, Urumqi, People’s Republic of China, Email gracy@189.cnPurpose: This study aimed to develop and validate a model based on machine learning algorithms to predict the risk of in-hospital death among advanced elderly patients with Heart Failure (HF).Methods: A total of 4580 advanced elderly patients who were admitted to the hospital and diagnosed with HF from May 2012 to September 2023 were included in this study, among whom 552 cases (12.5%) died. …”
    Get full text
    Article
  19. 539

    Artificial intelligence in primary aldosteronism: current achievements and future challenges by Yisi Xu, Benjin Liu, Xuqi Huang, Xudong Guo, Ning Suo, Shaobo Jiang, Hanbo Wang

    Published 2025-08-01
    “…Recent advances in artificial intelligence (AI) are reshaping the diagnostic and therapeutic of primary aldosteronism (PA). For screening, machine learning models integrate multidimensional data to improve the efficiency of PA detection, facilitating large-scale population screening. …”
    Get full text
    Article
  20. 540

    Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in hepatocellular carcinoma by Yuxuan Li, Mingbo Cao, Xiaorui Su, Gaoyuan Yang, Yupeng Ren, Zhiwei He, Zheng Shi, Ziyi Hu, Guirong Liang, Qi Zhang, Zhicheng Yao, Meihai Deng

    Published 2025-07-01
    “…In this study, transcriptomic data from the TCGA-LIHC dataset were used to identify differentially expressed cytoskeleton-related genes associated with overall survival (OS). Prognostic models were constructed using LASSO regression and random forest algorithms, and validated in two independent cohorts (ICGC LIRI-JP and CHCC-HBV). …”
    Get full text
    Article