-
441
Machine learning-based coronary heart disease diagnosis model for type 2 diabetes patients
Published 2025-05-01“…Five machine learning algorithms, including Logistic regression, Support Vector Machine (SVM), Random Forest (RF), eXtreme gradient boosting (XgBoost), and Light Gradient Boosting Machine (LightGBM), were selected for modeling. …”
Get full text
Article -
442
A Predictive Model for Secondary Posttonsillectomy Hemorrhage in Pediatric Patients: An 8‐Year Retrospective Study
Published 2025-02-01“…Univariate logistic regression analysis was used to screen features. Multivariate logistic regression and seven machine learning algorithms were used to construct predictive models. …”
Get full text
Article -
443
Practical applications of methods to incorporate patient preferences into medical decision models: a scoping review
Published 2025-03-01“…Abstract Background Algorithms and models increasingly support clinical and shared decision-making. …”
Get full text
Article -
444
Accurate prediction of mediolateral episiotomy risk during labor: development and verification of an artificial intelligence model
Published 2025-03-01“…Results Twenty eight factors influencing mediolateral episiotomy were screened. The model evaluation results showed that the SVM model has the best prediction ability among the six models, with an accuracy of 0.793, a recall rate of 0.981, a precision rate of 0.790, and a F1 value of 0.875. …”
Get full text
Article -
445
Novel exosome-associated LncRNA model predicts colorectal cancer prognosis and drug response
Published 2025-05-01“…Next, we further provide colony formation assay, Transwell assay and xenograft models to understand the carcinogenic effect of MIR4713HG. …”
Get full text
Article -
446
Development and validation of an explainable machine learning model for predicting osteoporosis in patients with type 2 diabetes mellitus
Published 2025-08-01“…Potential predictive features were identified using univariate analysis, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm. Eight supervised ML algorithms were applied to construct predictive models. …”
Get full text
Article -
447
Research Trends on Metabolic Syndrome in Digital Health Care Using Topic Modeling: Systematic Search of Abstracts
Published 2024-12-01“…The methodological approach included text preprocessing, text network analysis, and topic modeling using the BERTopic algorithm. …”
Get full text
Article -
448
AI driven cardiovascular risk prediction using NLP and Large Language Models for personalized medicine in athletes
Published 2025-06-01“…This study explores the innovative applications of Natural Language Processing (NLP) and Large Language Models (LLMs) in biomedical diagnostics, particularly for AI-driven arrhythmia detection, hypertrophic cardiomyopathy (HCM) in athletes, and personalized medicine. …”
Get full text
Article -
449
Remote Sensing for Urban Biodiversity: A Review and Meta-Analysis
Published 2024-11-01“…Our analysis incorporated technical (e.g., sensor, platform, algorithm), geographic (e.g., country, city extent, population) and ecological (biodiversity target, organization level, biome) meta-data, examining their frequencies, temporal trends (Generalized Linear Model—GLM), and covariations (Cramer’s V). …”
Get full text
Article -
450
Comparison between Logistic Regression and K-Nearest Neighbour Techniques with Application on Thalassemia Patients in Mosul
Published 2025-06-01“…The data was divided into 70% for training and 30% for screening. The experimental results showed that the logistic regression model performed better than the nearest neighbor algorithm with a precision of 96%, recall of 98%, and F1- score of 97% in the thalassemia intermedia category, while it had a precision of 97%, recall of 95%, and F1- score of 96% in the thalassemia major category, indicating that logistic regression performed well in distinguishing between these two categories. it has been shown that logistic regression is more effective than the K-nearest neighbor algorithm in classifying thalassemia patients, especially those with thalassemia major. …”
Get full text
Article -
451
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
Published 2025-08-01“…The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. …”
Get full text
Article -
452
Design and refinement of a clinical trial staffing model within the evolving landscape of oncology clinical trials
Published 2025-06-01“…We developed and evaluated a staffing model designed to meet this need. Methods: To address individual protocol acuity, the model's algorithms include metrics to account for visit frequency, and the quantity, and types of research-related procedures. …”
Get full text
Article -
453
Machine learning based predictive modeling and risk factors for prolonged SARS-CoV-2 shedding
Published 2024-11-01“…This study involved a large cohort of 56,878 hospitalized patients, and we leveraged the XGBoost algorithm to establish a predictive model based on these features. …”
Get full text
Article -
454
Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth
Published 2024-12-01“…Identification of new selective EGFR-T790M inhibitors has proven challenging through traditional screening platforms. With great advances in computer algorithms, machine learning improved the screening rates of molecules at full chemical spaces, and these molecules will present higher biological activity and targeting efficiency. …”
Get full text
Article -
455
Oxidative stress-related genes in uveal melanoma: the role of CALM1 in modulating oxidative stress and apoptosis and its prognostic significance
Published 2025-08-01“…Protein–protein interaction (PPI) networks were constructed to identify hub genes, and machine learning algorithms were utilized to screen for diagnostic genes, employing methods such as least absolute shrinkage and selection operator (LASSO) regression, random forest, support vector machine (SVM), gradient boosting machine (GBM), neural network algorithm (NNET), and eXtreme gradient boosting (XGBoost). …”
Get full text
Article -
456
The modeling of two-dimensional vortex flows in a cylindrical channel using parallel calculations on a supercomputer
Published 2022-03-01“…The methods of mathematical modeling were used. A parallel algorithm for solving two-dimensional equations of gas dynamics in cylindrical coordinates (r, z, t) was developed and a new version of the NUTCY_ps program created. …”
Get full text
Article -
457
Civil Aircraft Landing Attitude Ultra-Limit Warning System Based on mRMR-LSTM
Published 2025-06-01“…Then, the Max-Relevance and Min-Redundancy algorithm was applied to screen the QAR (Quick Access Recorder) parameters with the highest correlation with the predictor variables, and the LSTM network model was established to predict the pitch and roll angles of the aircraft landing, respectively. …”
Get full text
Article -
458
A Small-Sample Scenario Optimization Scheduling Method Based on Multidimensional Data Expansion
Published 2025-06-01“…Firstly, based on spatial correlation, the daily power curves of PV power plants with measured power are screened, and the meteorological similarity is calculated using multicore maximum mean difference (MK-MMD) to generate new energy output historical data of the target distributed PV system through the capacity conversion method; secondly, based on the existing daily load data of different types, the load historical data are generated using the stochastic and simultaneous sampling methods to construct the full historical dataset; subsequently, for the sample imbalance problem in the small-sample scenario, an oversampling method is used to enhance the data for the scarce samples, and the XGBoost PV output prediction model is established; finally, the optimal scheduling model is transformed into a Markovian decision-making process, which is solved by using the Deep Deterministic Policy Gradient (DDPG) algorithm. …”
Get full text
Article -
459
Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review
Published 2024-12-01“…Then, we comprehensively extracted relevant data related to machine learning algorithms, predictors, and predicted objectives. We subsequently performed a critical evaluation of research quality, data aggregation, and analyses.Results We screened 25 studies on predictive models for sepsis-associated acute kidney injury from a total of originally identified 2898 studies. …”
Get full text
Article -
460
Integrated multi-omics analysis and predictive modeling of heart failure using sepsis-related gene signature.
Published 2025-01-01“…<h4>Conclusion</h4>The model constructed through sepsis-related characteristic genes provides a highly advantageous method for predicting HF, and the characteristic genes we have screened may be potential biomarkers for predicting HF. …”
Get full text
Article