Search alternatives:
coot » cost (Expand Search)
Showing 401 - 420 results of 449 for search 'improve (coot OR root) optimization algorithm', query time: 0.13s Refine Results
  1. 401

    Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors. by Montaser Abdelsattar, Mohamed A Ismeil, Karim Menoufi, Ahmed AbdelMoety, Ahmed Emad-Eldeen

    Published 2025-01-01
    “…Preprocessing techniques, including feature scaling and parameter tuning, improved model performance by enhancing data consistency and optimizing hyperparameters. …”
    Get full text
    Article
  2. 402

    Rapid Quality Assessment of Polygoni Multiflori Radix Based on Near-Infrared Spectroscopy by Bin Jia, Ziying Mai, Chaoqun Xiang, Qiwen Chen, Min Cheng, Longkai Zhang, Xue Xiao

    Published 2024-01-01
    “…After optimizing the model using CARS, R2C increased by 0.15%, 0.41%, and 0.34%, RMSECV decreased by 0.53%, 0.32%, and 0.24%, R2P increased by 0.21%, 0.63%, and 0.35%, RMSEP decreased by 0.36%, 0.41%, and 0.31%, and RPD increased by 1.1, 0.9, and 0.6, significantly improving the predictive capacity of the model. …”
    Get full text
    Article
  3. 403

    Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming by Shiao Chen, Yaohui Gao, Zhaonian Dai, Wen Ren

    Published 2025-07-01
    “…., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. …”
    Get full text
    Article
  4. 404

    Predicting hydrocarbon reservoir quality in deepwater sedimentary systems using sequential deep learning techniques by Xiao Hu, Jun Xie, Xiwei Li, Junzheng Han, Zhengquan Zhao, Hamzeh Ghorbani

    Published 2025-07-01
    “…Three sequential deep learning models—Recurrent Neural Network and Gated Recurrent Unit—were developed and optimized using the Adam algorithm. The Adam-LSTM model outperformed the others, achieving a Root Mean Square Error of 0.009 and a correlation coefficient (R2) of 0.9995, indicating excellent predictive performance. …”
    Get full text
    Article
  5. 405

    An edge awareness-enhanced visual SLAM method for underground coal mines by Qi MU, Xin LIANG, Yuanjie GUO, Yuhao WANG, Zhanli LI

    Published 2025-03-01
    “…Specifically, images with clear textures and uniform illumination were obtained using the Retinex algorithm optimized using an adaptive gradient-domain guided filter. …”
    Get full text
    Article
  6. 406

    A Dynamic Kalman Filtering Method for Multi-Object Fruit Tracking and Counting in Complex Orchards by Yaning Zhai, Ling Zhang, Xin Hu, Fanghu Yang, Yang Huang

    Published 2025-07-01
    “…To address these challenges, this paper proposes a multi-object fruit tracking and counting method, which integrates an improved YOLO-based object detection algorithm with a dynamically optimized Kalman filter. …”
    Get full text
    Article
  7. 407

    Study on Color Detection of Korla Fragrant Pears by Near-Infrared Spectroscopy Combined with PLSR by Yifan Xia, Yang Liu, Hong Zhang, Jikai Che, Qing Liang

    Published 2025-03-01
    “…The optimal detection model for the color index L* was SGCD-UVE-PLSR (correlation coefficient (R) = 0.80, Root Mean Square Error (RMSE) = 1.19); for the color index a*, it was VN-SPA-PLSR (R = 0.84 and RMSE = 1.28), and for the color index b*, it was MSC-UVE-PLSR (R = 0.84 and RMSE = 1.25). …”
    Get full text
    Article
  8. 408

    Predicting hospital outpatient volume using XGBoost: a machine learning approach by Lingling Zhou, Qin Zhu, Qian Chen, Ping Wang, Hao Huang

    Published 2025-05-01
    “…Accurate prediction of outpatient demand can significantly enhance operational efficiency and optimize the allocation of medical resources. This study aims to develop a predictive model for daily hospital outpatient volume using the XGBoost algorithm. …”
    Get full text
    Article
  9. 409

    Calibration of the Composition of Low-Alloy Steels by the Interval Partial Least Squares Using Low-Resolution Emission Spectra with Baseline Correction by M. V. Belkov, K. Y. Catsalap, M. A. Khodasevich, D. A. Korolko, A. V. Aseev

    Published 2024-04-01
    “…Further improvement of calibration accuracy was achieved by using the adaptive iteratively reweighted penalized least squares algorithm for spectrum baseline correction. …”
    Get full text
    Article
  10. 410

    Development of Advanced Machine Learning Models for Predicting CO<sub>2</sub> Solubility in Brine by Xuejia Du, Ganesh C. Thakur

    Published 2025-02-01
    “…The results underscore the potential of ML models to significantly enhance prediction accuracy over a wide data range, reduce computational costs, and improve the efficiency of CCUS operations. This work demonstrates the robustness and adaptability of ML approaches for modeling complex subsurface conditions, paving the way for optimized carbon sequestration strategies.…”
    Get full text
    Article
  11. 411
  12. 412

    Research on rock burst prediction based on an integrated model by Junming Zhang, Qiyuan Xia, Hai Wu, Sailei Wei, Zhen Hu, Bing Du, Yuejing Yang, Huaixing Xiong

    Published 2025-05-01
    “…Additionally, the sparrow search algorithm (SSA) is employed to optimize hyperparameters, further improving the model’s performance. …”
    Get full text
    Article
  13. 413

    ARIMA-Kriging and GWO-BiLSTM Multi-Model Coupling in Greenhouse Temperature Prediction by Wei Zhou, Shuo Liu, Junxian Guo, Na Liu, Zhenglin Li, Chang Xie

    Published 2025-04-01
    “…Utilizing the high-quality data processed by this model, this study proposes and constructs a novel Grey Wolf Optimizer and Bidirectional Long Short-Term Memory (GWO-BiLSTM) temperature prediction framework, which combines a Grey Wolf Optimizer (GWO)-enhanced algorithm with a Bidirectional Long Short-Term Memory (BiLSTM) network. …”
    Get full text
    Article
  14. 414

    Leveraging Feature Sets and Machine Learning for Enhanced Energy Load Prediction: A Comparative Analysis by Fernando Pedro Silva Almeida, Mauro Castelli, Nadine Côrte-Real

    Published 2024-12-01
    “…This model achieved a Mean Squared Error of approximately 0.002-0.003, Mean Absolute Error of around 0.031-0.034, and Root Mean Squared Error of about 0.052-0.069. These findings contribute to improved building cooling load management, promoting insights into optimal energy utilization and sustainable building practices.   …”
    Get full text
    Article
  15. 415

    Gap-filling of land surface temperature in arid regions by combining Landsat 8 and 9 imageries by Fahime Arabi Aliabad, Ebrahim Ghaderpour, Ahmad Mazidi, Fatemeh Houshmandzade

    Published 2024-01-01
    “…The aims of this research are to determine the optimal parameters for the reconstruction of Landsat-LST images, required in many applications, by the harmonic analysis of time series algorithm (HANTS) and to investigate the possibility of improving LST reconstruction accuracy using Landsat 8 and 9 images simultaneously. …”
    Get full text
    Article
  16. 416

    Machine Learning Approach to Model Soil Resistivity Using Field Instrumentation Data by Md Jobair Bin Alam, Ashish Gunda, Asif Ahmed

    Published 2025-01-01
    “…The ability to infer these variables through a singular measurable soil property, soil resistivity, can potentially improve sub-surface characterization. This research leverages various machine learning algorithms to develop predictive models trained on a comprehensive dataset of sensor-based soil moisture, matric suction, and soil temperature obtained from prototype ET covers, with known resistivity values. …”
    Get full text
    Article
  17. 417

    Leveraging petrophysical and geological constraints for AI-driven predictions of total organic carbon (TOC) and hardness in unconventional reservoir prospects by Nandito Davy, Ammar El-Husseiny, Umair bin Waheed, Korhan Ayranci, Manzar Fawad, Mohamed Mahmoud, Nicholas B. Harris

    Published 2024-12-01
    “…Our optimized models achieved R2 (coefficient of determination) of 0.89 and RMSE (root-mean-square error) of 0.47 for TOC predictions and 0.90 and 34.8 for hardness predictions, reducing RMSE by up to 13.52% compared to the unconstrained model. …”
    Get full text
    Article
  18. 418

    Alpine Meadow Fractional Vegetation Cover Estimation Using UAV-Aided Sentinel-2 Imagery by Kai Du, Yi Shao, Naixin Yao, Hongyan Yu, Shaozhong Ma, Xufeng Mao, Litao Wang, Jianjun Wang

    Published 2025-07-01
    “…Subsequently, four machine learning models were employed for an accurate FVC inversion, using the estimated FVC values and UAV-derived reference FVC as inputs, following feature importance ranking and model parameter optimization. The results showed that: (1) Machine learning algorithms based on Sentinel-2 and UAV imagery effectively improved the accuracy of FVC estimation in alpine meadows. …”
    Get full text
    Article
  19. 419

    A deep neural network framework for estimating coastal salinity from SMAP brightness temperature data by Yidi Wei, Qing Xu, Qing Xu, Xiaobin Yin, Xiaobin Yin, Yan Li, Yan Li, Kaiguo Fan

    Published 2025-06-01
    “…The framework leverages machine learning interpretability tools (Shapley Additive Explanations, SHAP) to optimize input feature selection and employs a grid search strategy for hyperparameter tuning.Results and discussionSystematic validation against independent in-situ measurements demonstrates that the baseline DNN model constructed for the entire region and time period outperforms conventional algorithms including K-Nearest Neighbors, Random Forest, and XGBoost and the standard SMAP SSS product, achieving a reduction of 36.0%, 33.4%, 40.1%, and 23.2%, respectively in root mean square error (RMSE). …”
    Get full text
    Article
  20. 420

    Feasibility of Implementing Motion-Compensated Magnetic Resonance Imaging Reconstruction on Graphics Processing Units Using Compute Unified Device Architecture by Mohamed Aziz Zeroual, Natalia Dudysheva, Vincent Gras, Franck Mauconduit, Karyna Isaieva, Pierre-André Vuissoz, Freddy Odille

    Published 2025-05-01
    “…Motion correction in magnetic resonance imaging (MRI) has become increasingly complex due to the high computational demands of iterative reconstruction algorithms and the heterogeneity of emerging computing platforms. …”
    Get full text
    Article