Search alternatives:
errors » error (Expand Search)
Showing 981 - 1,000 results of 1,673 for search 'forest errors', query time: 0.10s Refine Results
  1. 981

    Assessing Environmental Policy Impact through the Ecological Footprint: The Case of Türkiye by Sacit Sarı

    Published 2025-07-01
    “…This study investigates the long-term effectiveness of environmental policies in Türkiye by examining the stochastic properties of the ecological footprint (EF) and its six subcomponents, carbon footprint, cropland footprint, grazing land footprint, forest products footprint, fishing grounds footprint, and built-up land footprint over the period 1961–2022. …”
    Get full text
    Article
  2. 982

    Movie Box Office Prediction Based on IFOA-GRNN by Wei Lu, Xiaoqiao Zhang, Xinchen Zhan

    Published 2022-01-01
    “…By comparing this model with FOA-GRNN, KNN, GRNN, Random Forest, Naive Bayes, Ensembles for Boosting, Discriminant Analysis Classifier, and SVM, it is found that the prediction effect of the IFOA-GRNN model is significantly better than the above eight models. …”
    Get full text
    Article
  3. 983

    Stock Closing Price Prediction with Machine Learning Algorithms: PETKM Stock Example In BIST by Abdullah Hulusi Kökçam, Gültekin Çağıl, Şevval Toprak

    Published 2023-04-01
    “…According to the calculated error metrics, LSTM and RFR algorithms gave better results than CNN with an MSE value less than 0.02. …”
    Get full text
    Article
  4. 984

    DISPUTES IN THE APPLICATION OF EMPLOYMENT COPYRIGHT LAW RELATING TO THE PRINCIPLE OF STRICT LIABILITY IN ENVIRONMENTAL CLUSTERS by Mashudi Mashudi, Abdul Basid

    Published 2024-01-01
    “…In this instance, it is evident in the environmental cluster of Article 22 Number 33 of the Job Creation Law, where the phrase "without the need to prove elements of error" is omitted, leading to ambiguity in its meaning. …”
    Get full text
    Article
  5. 985
  6. 986

    Using the ASTER GDEM v.2 global digital elevation model to identify areas of possible activation of karst processes in the Arkhangelsk region (Russia) by E.V. Polyakova, Y.G. Kutinov, A.L. Mineev, Z.B. Chistova, T.Ya. Belenovich

    Published 2021-06-01
    “…This approach is especially relevant for northern forested territories subjected to continuously increasing anthropogenic activity. …”
    Get full text
    Article
  7. 987

    Data driven decisions in education using a comprehensive machine learning framework for student performance prediction by Muhammad Nadeem Gul, Waseem Abbasi, Muhammad Zeeshan Babar, Abeer Aljohani, Muhammad Arif

    Published 2025-07-01
    “…Model evaluation was conducted using Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), demonstrating the robustness of the proposed approach. …”
    Get full text
    Article
  8. 988

    Individual tree segmentation of airborne and UAV LiDAR point clouds based on the watershed and optimized connection center evolution clustering by Yi Li, Donghui Xie, Yingjie Wang, Shuangna Jin, Kun Zhou, Zhixiang Zhang, Weihua Li, Wuming Zhang, Xihan Mu, Guangjian Yan

    Published 2023-07-01
    “…The results show that the matching rate (Rmatch) of tree tops is up to 0.92, the coefficient of determination (R2) of tree height estimation is up to .94, and the minimum root mean square error (RMSE) is 0.6 m. Our method outperforms the other methods especially in the broadleaf forests plot on slopes, where the five evaluation metrics for tree top detection outperformed the other algorithms by at least 11% on average. …”
    Get full text
    Article
  9. 989

    Urban tree health diagnosis approach based on thermal image and deep learning model by Le Ngoc Thien, Vuong Nhi Bui, Nguyen Khoa Nguyen, Gia Khang Pham Xuan, Gia Minh Nguyen

    Published 2025-01-01
    “…Traditional methods of manual inspection are labour-intensive and prone to errors. In this research paper, we propose a novel approach for diagnosing tree health based on thermal imaging and deep learning models. …”
    Get full text
    Article
  10. 990
  11. 991

    Modeling Whole-Plant Carbon Stock in <i>Olea europaea</i> L. Plantations Using Logarithmic Nonlinear Seemingly Unrelated Regression by Yungang He, Weili Kou, Ning Lu, Yi Yang, Chunqin Duan, Ziyi Yang, Yongjun Song, Jiayue Gao, Weiyu Zhuang

    Published 2025-04-01
    “…Carbon stock (CS) is an important indicator of the structure and function of forest ecosystems, and plays an important role in mitigating climate change, maintaining ecological system balance, promoting carbon trading, and other socioeconomic and ecological values. …”
    Get full text
    Article
  12. 992

    Environmental, socioeconomic, and sociocultural drivers of monkeypox transmission in the Democratic Republic of the Congo: a One Health perspective by Guangyu Lu, Zeyin Chong, Enyu Xu, Ce Na, Kaixuan Liu, Liying Chai, Pengpeng Xia, Kai Yang, Guoqiang Zhu, Jinkou Zhao, Olaf Müller

    Published 2025-02-01
    “…The GM (1, n) model, based on the proportion of primary forest, index of economic well-being, and mean annual precipitation, predicted the epidemic trend (revealed relative error: 2.69). …”
    Get full text
    Article
  13. 993

    Development of low-cost handheld soil moisture sensor for farmers and citizen scientists by Siddhesh Mane, Gurjeet Singh, Narendra N. Das, Narendra N. Das, Anant Kanungo, Nishit Nagpal, Michael Cosh, Younsuk Dong

    Published 2025-05-01
    “…For generalized calibration in mineral soils, we observed an overall Root Mean Square Error (RMSE) of 0.035 m3m−3 and a bias of &lt;0.001 m3m−3 along with a strong correlation (R = 0.90). …”
    Get full text
    Article
  14. 994

    COVID-19 Tweets Classification during Lockdown Period Using Machine Learning Classifiers by Syed Ali Jafar Zaidi, Indranath Chatterjee, Samir Brahim Belhaouari

    Published 2022-01-01
    “…The CNN and AdaBoost, on the other hand, have been taught to detect the mean square error, root mean square error, and mean absolute error. …”
    Get full text
    Article
  15. 995

    An end-to-end deep learning solution for automated LiDAR tree detection in the urban environment by Julian R. Rice, G. Andrew Fricker, Jonathan Ventura

    Published 2025-08-01
    “…Although algorithmic approaches that rely on remote sensing data have been developed for tree detection in forests, they generally struggle in the more varied urban environment. …”
    Get full text
    Article
  16. 996

    A Tractor Work Position Prediction Method Based on CNN-BiLSTM Under GNSS Signal Denial by Yangming Hu, Liyou Xu, Xianghai Yan, Ningjie Chang, Qigang Wan, Yiwei Wu

    Published 2024-12-01
    “…In farmland environments where GNSS signals are obstructed, such as forested areas or in adverse weather conditions, traditional GNSS/INS integrated navigation systems suffer from positioning errors and instability. …”
    Get full text
    Article
  17. 997

    3D Pulse Image Detection and Pulse Pattern Recognition Based on Subtle Motion Magnification Technology by Chongyang YAO, Yongxin CHOU, Zhiwei LIANG, Haiping YANG, Jicheng LIU, Dongmei LIN

    Published 2025-05-01
    “…Finally, machine learning algorithms such as decision trees and random forests are used to identify the five types of pulse conditions: deep pulse, intermittent pulse, flooding pulse, slippery pulse, and rapid pulse. …”
    Get full text
    Article
  18. 998

    Stacked hybrid model for load forecasting: integrating transformers, ANN, and fuzzy logic by Elakkiya E, Antony Raj S, Arunkumar Balakrishnan, Bhavyasri Sanisetty, Revanth Balaji Bandaru

    Published 2025-06-01
    “…Furthermore, these techniques are prone to errors in the presence of noisy data and have scalability issues when used on big, high-dimensional datasets. …”
    Get full text
    Article
  19. 999

    Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology by Elliot Gould, Hannah S. Fraser, Timothy H. Parker, Shinichi Nakagawa, Simon C. Griffith, Peter A. Vesk, Fiona Fidler, Daniel G. Hamilton, Robin N. Abbey-Lee, Jessica K. Abbott, Luis A. Aguirre, Carles Alcaraz, Irith Aloni, Drew Altschul, Kunal Arekar, Jeff W. Atkins, Joe Atkinson, Christopher M. Baker, Meghan Barrett, Kristian Bell, Suleiman Kehinde Bello, Iván Beltrán, Bernd J. Berauer, Michael Grant Bertram, Peter D. Billman, Charlie K. Blake, Shannon Blake, Louis Bliard, Andrea Bonisoli-Alquati, Timothée Bonnet, Camille Nina Marion Bordes, Aneesh P. H. Bose, Thomas Botterill-James, Melissa Anna Boyd, Sarah A. Boyle, Tom Bradfer-Lawrence, Jennifer Bradham, Jack A. Brand, Martin I. Brengdahl, Martin Bulla, Luc Bussière, Ettore Camerlenghi, Sara E. Campbell, Leonardo L. F. Campos, Anthony Caravaggi, Pedro Cardoso, Charles J. W. Carroll, Therese A. Catanach, Xuan Chen, Heung Ying Janet Chik, Emily Sarah Choy, Alec Philip Christie, Angela Chuang, Amanda J. Chunco, Bethany L. Clark, Andrea Contina, Garth A. Covernton, Murray P. Cox, Kimberly A. Cressman, Marco Crotti, Connor Davidson Crouch, Pietro B. D’Amelio, Alexandra Allison de Sousa, Timm Fabian Döbert, Ralph Dobler, Adam J. Dobson, Tim S. Doherty, Szymon Marian Drobniak, Alexandra Grace Duffy, Alison B. Duncan, Robert P. Dunn, Jamie Dunning, Trishna Dutta, Luke Eberhart-Hertel, Jared Alan Elmore, Mahmoud Medhat Elsherif, Holly M. English, David C. Ensminger, Ulrich Rainer Ernst, Stephen M. Ferguson, Esteban Fernandez-Juricic, Thalita Ferreira-Arruda, John Fieberg, Elizabeth A. Finch, Evan A. Fiorenza, David N. Fisher, Amélie Fontaine, Wolfgang Forstmeier, Yoan Fourcade, Graham S. Frank, Cathryn A. Freund, Eduardo Fuentes-Lillo, Sara L. Gandy, Dustin G. Gannon, Ana I. García-Cervigón, Alexis C. Garretson, Xuezhen Ge, William L. Geary, Charly Géron, Marc Gilles, Antje Girndt, Daniel Gliksman, Harrison B. Goldspiel, Dylan G. E. Gomes, Megan Kate Good, Sarah C. Goslee, J. Stephen Gosnell, Eliza M. Grames, Paolo Gratton, Nicholas M. Grebe, Skye M. Greenler, Maaike Griffioen, Daniel M. Griffith, Frances J. Griffith, Jake J. Grossman, Ali Güncan, Stef Haesen, James G. Hagan, Heather A. Hager, Jonathan Philo Harris, Natasha Dean Harrison, Sarah Syedia Hasnain, Justin Chase Havird, Andrew J. Heaton, María Laura Herrera-Chaustre, Tanner J. Howard, Bin-Yan Hsu, Fabiola Iannarilli, Esperanza C. Iranzo, Erik N. K. Iverson, Saheed Olaide Jimoh, Douglas H. Johnson, Martin Johnsson, Jesse Jorna, Tommaso Jucker, Martin Jung, Ineta Kačergytė, Oliver Kaltz, Alison Ke, Clint D. Kelly, Katharine Keogan, Friedrich Wolfgang Keppeler, Alexander K. Killion, Dongmin Kim, David P. Kochan, Peter Korsten, Shan Kothari, Jonas Kuppler, Jillian M. Kusch, Malgorzata Lagisz, Kristen Marianne Lalla, Daniel J. Larkin, Courtney L. Larson, Katherine S. Lauck, M. Elise Lauterbur, Alan Law, Don-Jean Léandri-Breton, Jonas J. Lembrechts, Kiara L’Herpiniere, Eva J. P. Lievens, Daniela Oliveira de Lima, Shane Lindsay, Martin Luquet, Ross MacLeod, Kirsty H. Macphie, Kit Magellan, Magdalena M. Mair, Lisa E. Malm, Stefano Mammola, Caitlin P. Mandeville, Michael Manhart, Laura Milena Manrique-Garzon, Elina Mäntylä, Philippe Marchand, Benjamin Michael Marshall, Charles A. Martin, Dominic Andreas Martin, Jake Mitchell Martin, April Robin Martinig, Erin S. McCallum, Mark McCauley, Sabrina M. McNew, Scott J. Meiners, Thomas Merkling, Marcus Michelangeli, Maria Moiron, Bruno Moreira, Jennifer Mortensen, Benjamin Mos, Taofeek Olatunbosun Muraina, Penelope Wrenn Murphy, Luca Nelli, Petri Niemelä, Josh Nightingale, Gustav Nilsonne, Sergio Nolazco, Sabine S. Nooten, Jessie Lanterman Novotny, Agnes Birgitta Olin, Chris L. Organ, Kate L. Ostevik, Facundo Xavier Palacio, Matthieu Paquet, Darren James Parker, David J. Pascall, Valerie J. Pasquarella, John Harold Paterson, Ana Payo-Payo, Karen Marie Pedersen, Grégoire Perez, Kayla I. Perry, Patrice Pottier, Michael J. Proulx, Raphaël Proulx, Jessica L Pruett, Veronarindra Ramananjato, Finaritra Tolotra Randimbiarison, Onja H. Razafindratsima, Diana J. Rennison, Federico Riva, Sepand Riyahi, Michael James Roast, Felipe Pereira Rocha, Dominique G. Roche, Cristian Román-Palacios, Michael S. Rosenberg, Jessica Ross, Freya E. Rowland, Deusdedith Rugemalila, Avery L. Russell, Suvi Ruuskanen, Patrick Saccone, Asaf Sadeh, Stephen M. Salazar, Kris Sales, Pablo Salmón, Alfredo Sánchez-Tójar, Leticia Pereira Santos, Francesca Santostefano, Hayden T. Schilling, Marcus Schmidt, Tim Schmoll, Adam C. Schneider, Allie E. Schrock, Julia Schroeder, Nicolas Schtickzelle, Nick L. Schultz, Drew A. Scott, Michael Peter Scroggie, Julie Teresa Shapiro, Nitika Sharma, Caroline L. Shearer, Diego Simón, Michael I. Sitvarin, Fabrício Luiz Skupien, Heather Lea Slinn, Grania Polly Smith, Jeremy A. Smith, Rahel Sollmann, Kaitlin Stack Whitney, Shannon Michael Still, Erica F. Stuber, Guy F. Sutton, Ben Swallow, Conor Claverie Taff, Elina Takola, Andrew J. Tanentzap, Rocío Tarjuelo, Richard J. Telford, Christopher J. Thawley, Hugo Thierry, Jacqueline Thomson, Svenja Tidau, Emily M. Tompkins, Claire Marie Tortorelli, Andrew Trlica, Biz R. Turnell, Lara Urban, Stijn Van de Vondel, Jessica Eva Megan van der Wal, Jens Van Eeckhoven, Francis van Oordt, K. Michelle Vanderwel, Mark C. Vanderwel, Karen J. Vanderwolf, Juliana Vélez, Diana Carolina Vergara-Florez, Brian C. Verrelli, Marcus Vinícius Vieira, Nora Villamil, Valerio Vitali, Julien Vollering, Jeffrey Walker, Xanthe J. Walker, Jonathan A. Walter, Pawel Waryszak, Ryan J. Weaver, Ronja E. M. Wedegärtner, Daniel L. Weller, Shannon Whelan, Rachel Louise White, David William Wolfson, Andrew Wood, Scott W. Yanco, Jian D. L. Yen, Casey Youngflesh, Giacomo Zilio, Cédric Zimmer, Gregory Mark Zimmerman, Rachel A. Zitomer

    Published 2025-02-01
    Get full text
    Article
  20. 1000

    Digitally twin driven ship cooling pump fault monitoring system and application case by Shaojuan Su, Zhe Miao, Yong Zhao, Nanzhe Song

    Published 2024-01-01
    “…By establishing highly realistic physical and mathematical models and integrating actual operational data, a comprehensive virtual environment was created to simulate the operational status of ship cooling pumps. Using the random forest algorithm for data training and testing, the results showed that the root mean square error for the training set was 0.0037873, and for the test set, it was 0.008929, indicating high accuracy in predicting the status of cooling pumps. …”
    Get full text
    Article