Showing 121 - 140 results of 150 for search 'errors in variables', query time: 0.08s Refine Results
  1. 121

    Assessing awareness and treatment knowledge of preventable blindness in rural and urban South African communities by Z Kiva, J E Wolvaardt

    Published 2024-06-01
    “…Proportions were calculated and χ2 tests done to determine whether there was any significant relationship between the categorical variables. Data analysis was done using Stata version 15. …”
    Get full text
    Article
  2. 122

    Experimental implementation of a non-ideal three-waveplate array as a polarization disturbance corrector by J.A. Jiménez-Arias, M. Vázquez-Ibarra, S.A. Salazar-Altamirano, P. Moreno-Martínez, J.M. López-Romero, K. Jiménez-García, N.V. Corzo

    Published 2025-03-01
    “…Polarization disturbance is a significant source of error in polarization-based experiments, where an input state is unpredictably transformed into an unintended state due to the birefringence of optical media. …”
    Get full text
    Article
  3. 123

    Environmental, socioeconomic, and sociocultural drivers of monkeypox transmission in the Democratic Republic of the Congo: a One Health perspective by Guangyu Lu, Zeyin Chong, Enyu Xu, Ce Na, Kaixuan Liu, Liying Chai, Pengpeng Xia, Kai Yang, Guoqiang Zhu, Jinkou Zhao, Olaf Müller

    Published 2025-02-01
    “…PCA identified five principal components, explaining 69% of the variance in the environmental, socioeconomic, and sociocultural variables. The first component was characterized by socioeconomic factors. …”
    Get full text
    Article
  4. 124

    Modeling Factors Influencing Project Financing Risk by Gholamreza Sharafi, Kiamars Fathi Hafashjani, Faegh Ahmadi

    Published 2024-03-01
    “…This surpasses the critical t-value at the 5% error level, underscoring the statistically significant influence of financing methods on political risk. …”
    Get full text
    Article
  5. 125

    Characterization of the Collagen Extraction Manufacturing Process Using Markov Chains and Artificial Neural Networks by Rosa Trasvina-Osorio, Sergio Alonso-Romero, Juan de Anda-Suarez, Valentin Calzada-Ledesma, Javier Yanez-Mendiola, Luis Fernando Villanueva-Jimenez, Erick Rojas-Mancera

    Published 2025-01-01
    “…Modelling a process requires a priori knowledge of the possible causal relationships between the study variables and the response, especially when the raw material is waste. …”
    Get full text
    Article
  6. 126

    Call for Papers: Demography Prize for Young Researches 2016/2017 by IF and FRFG

    Published 2016-12-01
    “…What are the potential sources of selection bias and measurement error? • Are the respective indicators by which they measure intergenerational justice sufficient and appropriate, or should they be supplemented? …”
    Get full text
    Article
  7. 127

    An indoor positioning method based on bluetooth array/PDR fusion using the SVD-EKF by Chenhui Li, Jie Zhen, Jianxin Wu

    Published 2025-02-01
    “…Aiming at the problem that the system positioning error increase in the complex and variable indoor environment, a fusion positioning method of Bluetooth array/PDR (Pedestrian Dead Reckoning) based on the SVD-EKF (Singular Value Decomposition–Extended Kalman Filter) is proposed. …”
    Get full text
    Article
  8. 128

    Modelos de biomasa y carbono para árboles de Gmelina arborea en plantaciones clonales by William Fonseca-González, Rafael Murillo-Cruz, Carlos Ávila-Arias, Marilyn Rojas-Vargas, Romeo Manuel Spínola Parallada

    Published 2021-01-01
    “…Los modelos se desarrollaron por medio del método de mínimos cuadrados ordinarios que utiliza como variable predictora el diámetro normal. [Resultados]: Estas ecuaciones explicaron más del 92 % de la variabilidad observada en biomasa y el carbono, con errores de estimados inferiores a 8.5 %, excepto para el carbono en hojas con menor ajuste (R2= 78.2) y mayor error (10.9 %). …”
    Get full text
    Article
  9. 129

    A Novel Hybrid Machine Learning Framework for Wind Speed Prediction by Rhafes Mohamed Yassine, Moussaoui Omar, Raboaca Maria Simona, Mihaltan Traian Candin

    Published 2025-01-01
    “…The performance of the models is evaluated using the R² score, Mean Absolute Error, and Root Mean Squared Error. The dataset for this study was generated from a numerical simulation conducted at a location with a latitude of 22.55° N and a longitude of -14.33° E. …”
    Get full text
    Article
  10. 130

    Performance Analysis of Dimming Methods in Visible Light Communication Systems by Mehmet Sonmez, Süleyman Börekoğlu

    Published 2022-09-01
    “…In this sense, it has been focused on performance differences between M-ary VPPM (M-ary Variable Pulse Position Modulation) scheme and VPAPM (Variable Pulse Amplitude Position Modulation) which was proposed to ensure the multilevel transmission for VPPM scheme. …”
    Get full text
    Article
  11. 131

    Analisis Pengaruh Citra Terhadap Kombinasi Kriptografi RSA dan STEGANOGRAFi LSB by Agus Rakhmadi Mido, Erik Iman Heri Ujianto

    Published 2022-02-01
    “…Pengujian MSE pada ukuran citra 128x128 menghasilkan error terbesar dan terkecil pada ukuran 1024x1024. …”
    Get full text
    Article
  12. 132

    Bite mark analysis: A brief overview by Reshma Priyanka Danam, Mary Sujatha Mekala

    Published 2025-01-01
    “…However, the field faces several challenges, including the variability in bite mark patterns due to factors such as the condition of the skin and the technique of the biter, as well as the subjective nature of interpreting bite mark impressions. …”
    Get full text
    Article
  13. 133
  14. 134

    Sorghum yield prediction based on remote sensing and machine learning in conflict affected South Sudan by John Karongo, Joseph Ivivi Mwaniki, John Ndiritu, Victor Mokaya

    Published 2025-02-01
    “…DT and XGboost both had an accuracy close to 80% and less prediction error. Predicting 2021 sorghum yield, XGboost, DT and RF models yielded best combination of metrics with good accuracy. …”
    Get full text
    Article
  15. 135

    Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology by Elliot Gould, Hannah S. Fraser, Timothy H. Parker, Shinichi Nakagawa, Simon C. Griffith, Peter A. Vesk, Fiona Fidler, Daniel G. Hamilton, Robin N. Abbey-Lee, Jessica K. Abbott, Luis A. Aguirre, Carles Alcaraz, Irith Aloni, Drew Altschul, Kunal Arekar, Jeff W. Atkins, Joe Atkinson, Christopher M. Baker, Meghan Barrett, Kristian Bell, Suleiman Kehinde Bello, Iván Beltrán, Bernd J. Berauer, Michael Grant Bertram, Peter D. Billman, Charlie K. Blake, Shannon Blake, Louis Bliard, Andrea Bonisoli-Alquati, Timothée Bonnet, Camille Nina Marion Bordes, Aneesh P. H. Bose, Thomas Botterill-James, Melissa Anna Boyd, Sarah A. Boyle, Tom Bradfer-Lawrence, Jennifer Bradham, Jack A. Brand, Martin I. Brengdahl, Martin Bulla, Luc Bussière, Ettore Camerlenghi, Sara E. Campbell, Leonardo L. F. Campos, Anthony Caravaggi, Pedro Cardoso, Charles J. W. Carroll, Therese A. Catanach, Xuan Chen, Heung Ying Janet Chik, Emily Sarah Choy, Alec Philip Christie, Angela Chuang, Amanda J. Chunco, Bethany L. Clark, Andrea Contina, Garth A. Covernton, Murray P. Cox, Kimberly A. Cressman, Marco Crotti, Connor Davidson Crouch, Pietro B. D’Amelio, Alexandra Allison de Sousa, Timm Fabian Döbert, Ralph Dobler, Adam J. Dobson, Tim S. Doherty, Szymon Marian Drobniak, Alexandra Grace Duffy, Alison B. Duncan, Robert P. Dunn, Jamie Dunning, Trishna Dutta, Luke Eberhart-Hertel, Jared Alan Elmore, Mahmoud Medhat Elsherif, Holly M. English, David C. Ensminger, Ulrich Rainer Ernst, Stephen M. Ferguson, Esteban Fernandez-Juricic, Thalita Ferreira-Arruda, John Fieberg, Elizabeth A. Finch, Evan A. Fiorenza, David N. Fisher, Amélie Fontaine, Wolfgang Forstmeier, Yoan Fourcade, Graham S. Frank, Cathryn A. Freund, Eduardo Fuentes-Lillo, Sara L. Gandy, Dustin G. Gannon, Ana I. García-Cervigón, Alexis C. Garretson, Xuezhen Ge, William L. Geary, Charly Géron, Marc Gilles, Antje Girndt, Daniel Gliksman, Harrison B. Goldspiel, Dylan G. E. Gomes, Megan Kate Good, Sarah C. Goslee, J. Stephen Gosnell, Eliza M. Grames, Paolo Gratton, Nicholas M. Grebe, Skye M. Greenler, Maaike Griffioen, Daniel M. Griffith, Frances J. Griffith, Jake J. Grossman, Ali Güncan, Stef Haesen, James G. Hagan, Heather A. Hager, Jonathan Philo Harris, Natasha Dean Harrison, Sarah Syedia Hasnain, Justin Chase Havird, Andrew J. Heaton, María Laura Herrera-Chaustre, Tanner J. Howard, Bin-Yan Hsu, Fabiola Iannarilli, Esperanza C. Iranzo, Erik N. K. Iverson, Saheed Olaide Jimoh, Douglas H. Johnson, Martin Johnsson, Jesse Jorna, Tommaso Jucker, Martin Jung, Ineta Kačergytė, Oliver Kaltz, Alison Ke, Clint D. Kelly, Katharine Keogan, Friedrich Wolfgang Keppeler, Alexander K. Killion, Dongmin Kim, David P. Kochan, Peter Korsten, Shan Kothari, Jonas Kuppler, Jillian M. Kusch, Malgorzata Lagisz, Kristen Marianne Lalla, Daniel J. Larkin, Courtney L. Larson, Katherine S. Lauck, M. Elise Lauterbur, Alan Law, Don-Jean Léandri-Breton, Jonas J. Lembrechts, Kiara L’Herpiniere, Eva J. P. Lievens, Daniela Oliveira de Lima, Shane Lindsay, Martin Luquet, Ross MacLeod, Kirsty H. Macphie, Kit Magellan, Magdalena M. Mair, Lisa E. Malm, Stefano Mammola, Caitlin P. Mandeville, Michael Manhart, Laura Milena Manrique-Garzon, Elina Mäntylä, Philippe Marchand, Benjamin Michael Marshall, Charles A. Martin, Dominic Andreas Martin, Jake Mitchell Martin, April Robin Martinig, Erin S. McCallum, Mark McCauley, Sabrina M. McNew, Scott J. Meiners, Thomas Merkling, Marcus Michelangeli, Maria Moiron, Bruno Moreira, Jennifer Mortensen, Benjamin Mos, Taofeek Olatunbosun Muraina, Penelope Wrenn Murphy, Luca Nelli, Petri Niemelä, Josh Nightingale, Gustav Nilsonne, Sergio Nolazco, Sabine S. Nooten, Jessie Lanterman Novotny, Agnes Birgitta Olin, Chris L. Organ, Kate L. Ostevik, Facundo Xavier Palacio, Matthieu Paquet, Darren James Parker, David J. Pascall, Valerie J. Pasquarella, John Harold Paterson, Ana Payo-Payo, Karen Marie Pedersen, Grégoire Perez, Kayla I. Perry, Patrice Pottier, Michael J. Proulx, Raphaël Proulx, Jessica L Pruett, Veronarindra Ramananjato, Finaritra Tolotra Randimbiarison, Onja H. Razafindratsima, Diana J. Rennison, Federico Riva, Sepand Riyahi, Michael James Roast, Felipe Pereira Rocha, Dominique G. Roche, Cristian Román-Palacios, Michael S. Rosenberg, Jessica Ross, Freya E. Rowland, Deusdedith Rugemalila, Avery L. Russell, Suvi Ruuskanen, Patrick Saccone, Asaf Sadeh, Stephen M. Salazar, Kris Sales, Pablo Salmón, Alfredo Sánchez-Tójar, Leticia Pereira Santos, Francesca Santostefano, Hayden T. Schilling, Marcus Schmidt, Tim Schmoll, Adam C. Schneider, Allie E. Schrock, Julia Schroeder, Nicolas Schtickzelle, Nick L. Schultz, Drew A. Scott, Michael Peter Scroggie, Julie Teresa Shapiro, Nitika Sharma, Caroline L. Shearer, Diego Simón, Michael I. Sitvarin, Fabrício Luiz Skupien, Heather Lea Slinn, Grania Polly Smith, Jeremy A. Smith, Rahel Sollmann, Kaitlin Stack Whitney, Shannon Michael Still, Erica F. Stuber, Guy F. Sutton, Ben Swallow, Conor Claverie Taff, Elina Takola, Andrew J. Tanentzap, Rocío Tarjuelo, Richard J. Telford, Christopher J. Thawley, Hugo Thierry, Jacqueline Thomson, Svenja Tidau, Emily M. Tompkins, Claire Marie Tortorelli, Andrew Trlica, Biz R. Turnell, Lara Urban, Stijn Van de Vondel, Jessica Eva Megan van der Wal, Jens Van Eeckhoven, Francis van Oordt, K. Michelle Vanderwel, Mark C. Vanderwel, Karen J. Vanderwolf, Juliana Vélez, Diana Carolina Vergara-Florez, Brian C. Verrelli, Marcus Vinícius Vieira, Nora Villamil, Valerio Vitali, Julien Vollering, Jeffrey Walker, Xanthe J. Walker, Jonathan A. Walter, Pawel Waryszak, Ryan J. Weaver, Ronja E. M. Wedegärtner, Daniel L. Weller, Shannon Whelan, Rachel Louise White, David William Wolfson, Andrew Wood, Scott W. Yanco, Jian D. L. Yen, Casey Youngflesh, Giacomo Zilio, Cédric Zimmer, Gregory Mark Zimmerman, Rachel A. Zitomer

    Published 2025-02-01
    “…A growing array of studies has explored this analytical variability in different fields and has found substantial variability among results despite analysts having the same data and research question. …”
    Get full text
    Article
  16. 136

    Estimación de biomasa y carbono en árboles de Cupressus lusitanica Mill. en Costa Rica by William Fonseca González, Marilyn Rojas Vargas, Ronny Villalobos Chacón, Federico Alice Guier

    Published 2023-05-01
    “…[Resultados]: El coeficiente de determinación (R2) fue superior a 83.8 % y el error de estimación o sesgo inferior a 7.2 %. La fracción de hojas y raíz fue más difícil de modelar, presentaron menor ajuste y error más alto. …”
    Get full text
    Article
  17. 137

    A comparative analysis for crack identification in structural health monitoring: a focus on experimental crack length prediction with YUKI and POD-RBF by Zenzen, Roumaissa, Ayadi, Ayoub, Benaissa, Brahim, Belaidi, Idir, Sukic, Enes, Khatir, Tawfiq

    Published 2024-03-01
    “…Comparative evaluations with conventional optimisation algorithms, namely Cuckoo, Bat, and Particle Swarm Optimisation, reveal similar Mean Percentage Error values but with increased result variability, whereas Deep Artificial Neural Network models with varied hidden layer sizes.…”
    Get full text
    Article
  18. 138

    Accelerating charge estimation in molecular dynamics simulations using physics-informed neural networks: corrosion applications by Aditya Venkatraman, Mark A. Wilson, David Montes de Oca Zapiain

    Published 2025-02-01
    “…Lastly, even though developed for corrosion, these protocols are formulated in a phenomenon-agnostic manner, allowing application to various variable-charge interatomic potentials and related fields.…”
    Get full text
    Article
  19. 139

    Physiotherapy under pressure: A cross-sectional study on the interplay between perfectionism, moral injury, and burnout. by Daniel Biggs, Laura Blackburn, Cameron Black, Sivaramkumar Shanmugam

    Published 2025-01-01
    “…SEM revealed perfectionism and moral injury collectively accounted for a substantial 62% of burnout variability, highlighting their sequential impact on burnout manifestation.…”
    Get full text
    Article
  20. 140

    Systematic literature review on usability and training outcomes of using digital training technologies in industry by Lasse Nielsen Langendorf, Md Saifuddin Khalid

    Published 2025-03-01
    “…While digital training technologies generally show improved performance over traditional manuals, comparisons with peer-training yield inconsistent results. This variability, combined with differences in context, populations, and evaluation methods, suggests that broader research is needed for definitive conclusions on the potential performance gains achieved by utilizing digital training technologies.…”
    Get full text
    Article