Showing 10,501 - 10,520 results of 462,608 for search 'at~', query time: 1.09s Refine Results
  1. 10501
  2. 10502
  3. 10503
  4. 10504

    Hydrothermal Synthesis of Modified Hydrophobic ZnAl-Layered Double Hydroxides Using Structure-Directing Agents and Their Enhanced Adsorption Capacity for -Nitrophenol by Yayue Sun, Jiabin Zhou, Ya Cheng, Jiaguo Yu, Weiquan Cai

    Published 2014-05-01
    “…The hierarchical porous ZnAl/SDBS–LDH prepared using SS possesses the highest surface area (128.9 m 2 /g) and the greatest pore volume (0.37 cm 3 /g). …”
    Get full text
    Article
  5. 10505
  6. 10506
  7. 10507

    Climate Change Impact on Monthly Precipitation Wet and Dry Spells in Arid Regions: Case Study over Wadi Al-Lith Basin by Mansour Almazroui, Khaled S. Balkhair, M. Nazrul Islam, Zekai Şen

    Published 2017-01-01
    “…The impact of climate change on the durations of wet and dry spells is obtained using three global climate models projections with RCP4.5 and RCP8.5 scenarios downscaled by RCM. …”
    Get full text
    Article
  8. 10508

    Procedimientos de Ordeño: Pasos para Mejorar la Calidad de la Leche y Eficiencia al Ordeñar las Vacas by Izabella Toledo

    Published 2021-11-01
    “…Written by Izabella Toledo, and published by the UF/IFAS Department of Animal Sciences, October 2021. …”
    Get full text
    Article
  9. 10509
  10. 10510
  11. 10511
  12. 10512
  13. 10513
  14. 10514
  15. 10515
  16. 10516
  17. 10517
  18. 10518

    Simulação de carga térmica e otimização de sistema de ar-condicionado utilizando a integração EnergyPlus™ / MATLAB® by Guilherme Antonio dos Santos, Lucas Francisco Rodrigues, Maria Thereza de Moraes Gomes Rosa, Miriam Tvrzská de Gouvêa

    Published 2023-03-01
    “… Neste trabalho, avalia-se a carga térmica do laboratório HSBC localizado no 1º andar do edifício Alfred Cownley Slater (prédio 04) da Universidade Presbiteriana Mackenzie (UPM), em Higienópolis, São Paulo, utilizando o simulador EnergyPlus™ interagindo com o SketchUp®, programa de modelagem, através do plug-in Openstudio®. …”
    Get full text
    Article
  19. 10519
  20. 10520

    Comment on “Prediction of the SYM‐H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification” by Abduallah et al. (2024) by Armando Collado‐Villaverde, Pablo Muñoz, Consuelo Cid

    Published 2024-08-01
    “…Abstract Abduallah et al. (2024b, https://doi.org/10.1029/2023sw003824) proposed a novel approach using a deep neural network model, which includes a graph neural network and a bidirectional LSTM layer, named SYMHnet, to forecast the SYM‐H index one and 2 hr in advance. …”
    Get full text
    Article