Showing 1,501 - 1,520 results of 21,727 for search 'TEDx~', query time: 1.56s Refine Results
  1. 1501

    2024 State Flood Plan: History in the Making by Texas Water Development Board

    Published 2025-01-01
    “…Texas Water Journal…”
    Get full text
    Article
  2. 1502
  3. 1503
  4. 1504
  5. 1505
  6. 1506
  7. 1507
  8. 1508
  9. 1509
  10. 1510
  11. 1511

    A Bore-Integrated Patch Antenna Array for Whole-Body Excitation in Ultra-High-Field Magnetic Resonance Imaging by Svetlana S. Egorova, Nikolai A. Lisachenko, Egor I. Kretov, Yang Gao, Xiaotong Zhang, Stanislav B. Glybovski, Georgiy A. Solomakha

    Published 2025-01-01
    “…The human body&#x2019;s ultra-high field magnetic resonance imaging suffers from the inhomogeneity of the radio frequency magnetic field <inline-formula> <tex-math notation="LaTeX">$B_{1}^{+}$ </tex-math></inline-formula> and the high-peak levels of SAR created in body tissues during transmission. …”
    Get full text
    Article
  12. 1512

    CFO-CR: Carrier Frequency Offset Methodology for High-Rate Common Randomness Generation by Prashanth Kumar Herooru Sheshagiri, Martin Reisslein, Juan A. Cabrera, Frank H. P. Fitzek

    Published 2025-01-01
    “…Our proposed CFO-CR methodology can generate 2048 bits of CR at a comparatively low reconciliation cost of 72 bytes while only making 256 channel observations and passing all common randomness tests. For generating 2048 bits of CR, other state-of-the-art approaches either require more channel observations (<inline-formula> <tex-math notation="LaTeX">$\ge 2048$ </tex-math></inline-formula>) or incur a higher reconciliation cost (<inline-formula> <tex-math notation="LaTeX">$\ge 450$ </tex-math></inline-formula> bytes).…”
    Get full text
    Article
  13. 1513

    A Wearable System for Experimental Knee Pain During Real-World Locomotion: Habituation and Motor Adaptation by Jesse M. Charlton, Liam H. Foulger, Calvin Kuo, Jean-Sebastien Blouin

    Published 2025-01-01
    “…A linear model fit the data well for intensities &#x003E;1/10, though a piecewise linear (Adj R<inline-formula> <tex-math notation="LaTeX">$^{{2}} =0.874$ </tex-math></inline-formula>) or exponential model (Adj R<inline-formula> <tex-math notation="LaTeX">$^{{2}} =0.869$ </tex-math></inline-formula>) was required to fit the perception data across the stimulus intensity range (0-5/10). …”
    Get full text
    Article
  14. 1514

    Fully CMOS Boost Converter Operating at 2.65 GHz for Photovoltaic Energy Harvesting by Pedro Mendonca Dos Santos, Ricardo Alexandre Marques Lameirinhas, Catarina P. Correia V. Bernardo, Joao Paulo Neto Torres, Antonio Serralheiro, Rafael Vieira, Nuno Lourenco

    Published 2025-01-01
    “…The system delivers 1.2 V for a 10 k<inline-formula> <tex-math notation="LaTeX">$\Omega $ </tex-math></inline-formula> load, with an output power of the order of <inline-formula> <tex-math notation="LaTeX">$144~\mu $ </tex-math></inline-formula>W. …”
    Get full text
    Article
  15. 1515

    Deep Joint Demosaicking and Super-Resolution for Spectral Filter Array Images by Abdelhamid N. Fsian, Jean-Baptiste Thomas, Jon Y. Hardeberg, Pierre Gouton

    Published 2025-01-01
    “…Moreover, for joint demosaicking and super resolution our model averages 35.26 (dB) and 26.29 (dB), respectively for <inline-formula> <tex-math notation="LaTeX">$\times 2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\times 4$ </tex-math></inline-formula> upscale, outperforming state-of-the-art sequential approach.The codes and datasets are available at <uri>https://github.com/HamidFsian/DRDmSR</uri>.…”
    Get full text
    Article
  16. 1516

    Study of Highly Stable Nitrogen-Doped a-InGaSnO Thin-Film Transistors by Wenyang Zhang, Li Lu, Chenfei Li, Weijie Jiang, Wenzhao Wang, Xingqiang Liu, Ablat Abliz, Da Wan

    Published 2024-01-01
    “…Compared with undoped a-IGTO TFTs, a-IGTO TFTs with 6 min N plasma treatment exhibit superior bias stress stability and a threshold voltages (<inline-formula> <tex-math notation="LaTeX">$V_{\mathrm {th}}$ </tex-math></inline-formula>) closer to 0 V with almost no decline in mobility. …”
    Get full text
    Article
  17. 1517

    Adaptive Modification in Agonist Common Drive After Combined Blood Flow Restriction and Neuromuscular Electrical Stimulation by Yi-Ching Chen, Chia-Chan Wu, Yeng-Ting Lin, Yueh Chen, Ing-Shiou Hwang

    Published 2025-01-01
    “…The results showed a significant decrease in MVC after training (<inline-formula> <tex-math notation="LaTeX">$\text {p}\lt 0.001$ </tex-math></inline-formula>). …”
    Get full text
    Article
  18. 1518

    Amplitude Modulation Depth Coding Method for SSVEP-Based Brain&#x2013;Computer Interfaces by Ruxue Li, Zhenyu Wang, Xi Zhao, Guiying Xu, Honglin Hu, Ting Zhou, Tianheng Xu

    Published 2025-01-01
    “…The results show that the proposed paradigm obtains an average classification accuracy of <inline-formula> <tex-math notation="LaTeX">$81.7~\pm ~12.6$ </tex-math></inline-formula>% with an average information transfer rate (ITR) of <inline-formula> <tex-math notation="LaTeX">$45.4~\pm ~11.5$ </tex-math></inline-formula> bits/min. …”
    Get full text
    Article
  19. 1519

    An Ultrasound-Based Non-Invasive Blood Pressure Estimation Method Based on Optimal Vascular Wall Tracking Position by Liyuan Liu, Xingguang Geng, Fei Yao, Yitao Zhang, Haiying Zhang, Yunfeng Wang, Zhaoying Zheng

    Published 2025-01-01
    “…The overall mean deviation for systolic blood pressure was <inline-formula> <tex-math notation="LaTeX">$2.2~\pm ~2.1$ </tex-math></inline-formula> mmHg, and for diastolic blood pressure, it was <inline-formula> <tex-math notation="LaTeX">$2.1~\pm ~2.2$ </tex-math></inline-formula> mmHg. …”
    Get full text
    Article
  20. 1520

    Comparison of Deep-Learning-Based Segmentation Models: Using Top View Person Images by Imran Ahmed, Misbah Ahmad, Fakhri Alam Khan, Muhammad Asif

    Published 2020-01-01
    “…The experimental results reveal the effectiveness and performance of segmentation models by achieving <inline-formula> <tex-math notation="LaTeX">$IoU$ </tex-math></inline-formula> of 83&#x0025;, 84&#x0025;, and 86&#x0025; and <inline-formula> <tex-math notation="LaTeX">$mIoU$ </tex-math></inline-formula> of 80&#x0025; 82&#x0025; and 84&#x0025; for FCN, U-Net, and DeepLabv3 respectively. …”
    Get full text
    Article