Showing 61 - 80 results of 133 for search 'Mo Bounce~', query time: 2.61s Refine Results
  1. 61

    Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice by Qi Zhang, Sijing Hu, Jianjun Wu, Peng Sun, Quanlong Zhang, Yang Wang, Qiming Zhao, Ting Han, Luping Qin, Qiaoyan Zhang

    Published 2023-03-01
    “…Nystose (NST), an oligosaccharide, was isolated from the roots of Morinda officinalis How. (MO). The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice, and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts. …”
    Get full text
    Article
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67
  8. 68
  9. 69
  10. 70
  11. 71
  12. 72
  13. 73

    Partitioning Functional of a Class of Convex Bodies by Xinling Zhang

    Published 2025-01-01
    “…For each <i>n</i>-dimensional real Banach space <i>X</i>, each positive integer <i>m</i>, and each bounded set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> with diameter greater than 0, let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>β</mi><mi>X</mi></msub><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the infimum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>X</mi></mrow></semantics></math></inline-formula> can be represented as the union of <i>m</i> subsets of <i>A</i>, whose diameters are not greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula> times the diameter of <i>A</i>. …”
    Get full text
    Article
  14. 74

    The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient by Angelo Alvino, Vincenzo Ferone, Anna Mercaldo

    Published 2024-12-01
    “…In this paper, we prove the existence and uniqueness results for a weak solution to a class of Dirichlet boundary value problems whose prototype is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msub><mo>Δ</mo><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>β</mi><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mi>q</mi></msup><mo>+</mo><mi>f</mi><mo> </mo><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">n</mi><mo> </mo><mo>Ω</mo></mrow><mspace width="0.166667em"></mspace><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>0</mn><mo> </mo><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi><mo> </mo><mo>∂</mo><mo>Ω</mo></mrow><mspace width="0.166667em"></mspace><mo>,</mo><mspace width="4pt"></mspace></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is a bounded open subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>N</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>Δ</mo><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>div</mi><mfenced separators="" open="(" close=")"><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>−</mo><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is a positive constant and <i>f</i> is a measurable function satisfying suitable summability conditions depending on <i>q</i> and a smallness condition.…”
    Get full text
    Article
  15. 75

    On the Exponential Atom-Bond Connectivity Index of Graphs by Kinkar Chandra Das

    Published 2025-01-01
    “…The exponential atom-bond connectivity index is defined as follows: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>e</mi><mi mathvariant="script">ABC</mi></msup><mo>=</mo><msup><mi>e</mi><mi mathvariant="script">ABC</mi></msup><mrow><mo>(</mo><mo>Υ</mo><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><msub><mi>v</mi><mi>i</mi></msub><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mo>Υ</mo><mo>)</mo></mrow></mrow></munder></mstyle><mspace width="0.166667em"></mspace><msup><mi>e</mi><msqrt><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><msub><mi>d</mi><mi>i</mi></msub><mo>+</mo><msub><mi>d</mi><mi>j</mi></msub><mo>−</mo><mn>2</mn></mrow><mrow><msub><mi>d</mi><mi>i</mi></msub><mspace width="0.166667em"></mspace><msub><mi>d</mi><mi>j</mi></msub></mrow></mfrac></mstyle></msqrt></msup><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mi>i</mi></msub></semantics></math></inline-formula> is the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Υ</mo></semantics></math></inline-formula>. …”
    Get full text
    Article
  16. 76

    Interior Peak Solutions for a Semilinear Dirichlet Problem by Hissah Alharbi, Hibah Alkhuzayyim, Mohamed Ben Ayed, Khalil El Mehdi

    Published 2025-01-01
    “…In this paper, we consider the semilinear Dirichlet problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow><mo>:</mo><mo>−</mo><mo>Δ</mo><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mi>u</mi><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mstyle><mo>−</mo><mi>ε</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> on ∂<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula> is a bounded regular domain in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> is a small positive parameter, and <i>V</i> is a non-constant positive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-function on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mo>Ω</mo><mo>¯</mo></mover></semantics></math></inline-formula>. …”
    Get full text
    Article
  17. 77

    On Discrete Shifts of Some Beurling Zeta Functions by Antanas Laurinčikas, Darius Šiaučiūnas

    Published 2024-12-01
    “…We consider the Beurling zeta function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mi mathvariant="double-struck">P</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mi>σ</mi><mo>+</mo><mi>i</mi><mi>t</mi></mrow></semantics></math></inline-formula>, of the system of generalized prime numbers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">P</mi></semantics></math></inline-formula> with generalized integers <i>m</i> satisfying the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∑</mo><mrow><mi>m</mi><mo>⩽</mo><mi>x</mi></mrow></msub><mn>1</mn><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mi>x</mi><mi>δ</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>⩽</mo><mi>δ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, and suppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mi mathvariant="double-struck">P</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> has a bounded mean square for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>></mo><msub><mi>σ</mi><mi mathvariant="double-struck">P</mi></msub></mrow></semantics></math></inline-formula> with some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>σ</mi><mi mathvariant="double-struck">P</mi></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article
  18. 78

    Research on affine equivalence enumeration of the three families vectorial function by Feng YUAN, Ji-jun JIANG, Yang YANG, Sheng-wei XU

    Published 2017-11-01
    “…In recent years,Qu-Tan-Tan-Li function,Zha-Hu-Sun function and Tang-Carlet-Tang function have been proposed with differential uniformity 4 and many good cryptographic properties.the counting problem of affine equivalent to the three families cryptographic functions was investigated.By using some properties of finite fields,the upper and lower bound of the number of affine equivalent to the Zha-Hu-Sun function,and the upper bound of the number of affine equivalent to the Qu-Tan-Tan-Li function and Tang-Carlet-Tang function were computed,respectively.Moreover,a conjecture was given about the exact number of affine equivalent to the Zha-Hu-Sun function.Results show that there are at least<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mn>2</mn> <mrow> <mn>53</mn></mrow> </msup> <msup> <mrow><mo>[</mo> <mrow> <mstyle displaystyle="true"> <munderover> <mo>∏</mo> <mrow> <mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>8</mn> </munderover> <mrow> <mo stretchy="false">(</mo><msup> <mn>2</mn> <mi>i</mi> </msup> <mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> </mstyle></mrow> <mo>]</mo></mrow> <mn>2</mn> </msup> </math></inline-formula>cryptographic functions of affine equivalent to the Zha-Hu-Sun function over finite field GF(2<sup>8</sup>),which can be chosen as S-boxes of block ciphers.…”
    Get full text
    Article
  19. 79

    Exact controllability for a nonlinear stochastic wave equation

    Published 2006-01-01
    “…The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>&#x00D7;</mml:mo><mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>&#x2212;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> with <mml:math> <mml:mi>G</mml:mi> </mml:math> being a bounded open subset of <mml:math> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:math> and the nonlinear terms having at most a linear growth.…”
    Get full text
    Article
  20. 80

    Accurate Sum and Dot Product with New Instruction for High-Precision Computing on ARMv8 Processor by Kaisen Xie, Qingfeng Lu, Hao Jiang, Hongxia Wang

    Published 2025-01-01
    “…It has been proven that our accurate summation and dot algorithms’ error bounds are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mi>γ</mi><mi>n</mi></msub><mi>cond</mi><mo>+</mo><mi>u</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mi>n</mi></msub><msub><mi>γ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mi>cond</mi><mo>+</mo><mi>u</mi></mrow></semantics></math></inline-formula>, where ‘cond’ denotes the condition number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mi>n</mi></msub><mo>=</mo><mi>n</mi><mo>·</mo><mi>u</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>n</mi><mo>·</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <i>u</i> denotes the relative rounding error unit. …”
    Get full text
    Article