-
1
Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
Published 2024-08-01“…We are concerned with the principal eigenvalue of \begin{equation*} \begin{cases} -\Delta_p u= \lambda\theta_1\varphi_p(v), &x\in \Omega,\\ -\Delta_p v= \lambda\theta_2\varphi_p(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega \end{cases} \tag{P} \end{equation*} and the global structure of positive solutions for the system \begin{equation*} \begin{cases} -\Delta_p u= \lambda f(v), &x\in \Omega,\\ -\Delta_p v= \lambda g(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega, \end{cases} \tag{Q} \end{equation*} where $\varphi_p(s)=|s|^{p-2}s$, $\Delta_p s=\text{div}(|\nabla s|^{p-2}\nabla s)$, $\lambda>0$ is a parameter, $\Omega\subset\mathbb{R}^N$, $N> 2$, is a bounded domain with smooth boundary $\partial\Omega$, $f,g:\mathbb{R}\to(0,\infty)$ are continuous functions with $p$-superlinear growth at infinity. …”
Get full text
Article -
2
Analysis of global dynamics in an attraction-repulsion model with nonlinear indirect signal and logistic source
Published 2024-10-01“…The following chemotaxis system has been considered: \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \Delta v-\xi \nabla\cdot(v \nabla w_{1})+\chi \nabla\cdot(v \nabla w_{2})+\lambda v-\mu v^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] w_{1t} = \Delta w_{1}-w_{1}+w^{\kappa_{1}}, \ 0 = \Delta w-w+v^{\kappa_{2}}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{2}-w_{2}+v^{\kappa_{3}}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. …”
Get full text
Article -
3
Schrödinger–Hardy system without the Ambrosetti–Rabinowitz condition on Carnot groups
Published 2024-06-01“…In this paper, we study the following Schrödinger–Hardy system \begin{equation*} \begin{cases} -\Delta_{\mathbb{G}}u-\mu\frac{\psi^2}{r(\xi)^2}u=F_u(\xi,u,v)\ &{\rm in}\ \Omega, \\ -\Delta_{\mathbb{G}}v-\nu\frac{\psi^2 }{r(\xi)^2}v=F_v(\xi,u,v)\ &{\rm in}\ \Omega, \\ u=v=0 \ \ & {\rm on}\ \partial\Omega, \end{cases} \end{equation*} where $\Omega $ is a smooth bounded domain on Carnot groups $\mathbb{G}$, whose homogeneous dimension is $Q\geq 3$, $\Delta_{\mathbb{G}}$ denotes the sub-Laplacian operator on $\mathbb{G}$, $\mu$ and $\nu$ are real parameters, $r(\xi)$ is the natural gauge associated with fundamental solution of $-\Delta_{\mathbb{G}}$ on $\mathbb{G}$, $\psi$ is the geometrical function defined as $\psi=|\nabla_{\mathbb{G}}r|$, and $\nabla_{\mathbb{G}}$ is the horizontal gradient associated with $\Delta_{\mathbb{G}}$. …”
Get full text
Article -
4
Boundedness and large time behavior of a signal-dependent motility system with nonlinear indirect signal production
Published 2024-11-01“…In this paper, we study a chemotaxis system with nonlinear indirect signal production \begin{document}$ \left\{ {\begin{array}{*{20}{l}} {{u_t} = \Delta \left( {\gamma \left( v \right) u } \right)}+ru-\mu u^l, \quad &x\in \Omega, t>0, \\ {{v_t} = \Delta v - v + w^{\beta}}, \quad &x\in \Omega, t>0, \\ {{w_t} = - \delta w + u}, \quad &x\in \Omega, t>0, \end{array}} \right. …”
Get full text
Article -
5
A note on the global existence and boundedness of an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction
Published 2025-02-01“…We investigate the two-species chemotaxis predator-prey system given by the following system: ut=Δu−χ∇⋅(u∇w)+u(λ1−μ1ur1−1+av),x∈Ω,t>0,vt=Δv+ξ∇⋅(v∇z)+v(λ2−μ2vr2−1−bu),x∈Ω,t>0,0=Δw−w+v,x∈Ω,t>0,0=Δz−z+u,x∈Ω,t>0,\left\{\begin{array}{ll}{u}_{t}=\Delta u-\chi \nabla \cdot \left(u\nabla w)+u\left({\lambda }_{1}-{\mu }_{1}{u}^{{r}_{1}-1}+av),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ {v}_{t}=\Delta v+\xi \nabla \cdot \left(v\nabla z)+v\left({\lambda }_{2}-{\mu }_{2}{v}^{{r}_{2}-1}-bu),& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta w-w+v,& x\in \Omega ,\hspace{0.33em}t\gt 0,\\ 0=\Delta z-z+u,& x\in \Omega ,\hspace{0.33em}t\gt 0,\end{array}\right. in a bounded domain Ω⊂RN(N≥1)\Omega \subset {{\mathbb{R}}}^{N}\left(N\ge 1) with smooth boundary, where parameters χ,ξ,λi,μi>0\chi ,\xi ,{\lambda }_{i},{\mu }_{i}\gt 0, and ri>1(i=1,2){r}_{i}\gt 1\hspace{0.33em}\left(i=1,2). …”
Get full text
Article -
6
Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
Published 2024-01-01“…In this paper, we study the existence of multi-bump solutions for the following Schrödinger–Bopp–Podolsky system with steep potential well: \begin{equation*} \begin{cases} -\Delta u+(\lambda V(x)+V_0(x))u+K(x)\phi u= |u|^{p-2}u, &x\in \mathbb{R}^3,\\ -\Delta \phi+a^2\Delta^2\phi=K(x) u^2, &x\in \mathbb{R}^3, \end{cases} \end{equation*} where $p \in(4,6), a>0$ and $\lambda$ is a parameter. …”
Get full text
Article -
7
Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism
Published 2024-08-01“…In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consumption mechanism$ \begin{equation*} \left\{ \begin{array}{ll} v_{1t} = \nabla \cdot\big(\psi(v_{1})\nabla v_{1}-\chi \phi(v_{1})\nabla v_{2}\big)+\lambda_{1}v_{1}-\lambda_{2}v_{1}^{\beta},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{2t} = \Delta v_{2}-w^{\theta}v_{2}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v_{1}^{\alpha}, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] \end{array} \right. …”
Get full text
Article -
8
Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source
Published 2023-11-01“…We consider the chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \nabla u-u \,\xi (v) \nabla v\big )+\mu \, u(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} …”
Get full text
Article -
9
Massless limit and conformal soft limit for celestial massive amplitudes
Published 2025-01-01“…This can be compared with the conformal soft limit in celestial gluon amplitudes, where a singularity $$1/(\Delta -1)$$ 1 / ( Δ - 1 ) arises and the leading contribution comes from the soft energy $$\omega \rightarrow 0$$ ω → 0 . …”
Get full text
Article -
10
Blow-up of nonradial solutions to the hyperbolic-elliptic chemotaxis system with logistic source
Published 2023-01-01“…This paper is concerned with the blow-up of solutions to the following hyperbolic-elliptic chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t} =-\nabla \cdot (\chi u \nabla v)+g(u), \qquad x\in \Omega , \ t>0,\\ \;\;\; 0 =\Delta v-v+u, \hspace{58.33328pt}x\in \Omega , \ t>0, \end{array}\right.} …”
Get full text
Article -
11
Global boundedness of solutions to a chemotaxis consumption model with signal dependent motility and logistic source
Published 2024-11-01“…This paper deals with the following chemotaxis system: \begin{equation*} {\left\lbrace \begin{array}{ll} u_{t}=\nabla \cdot \big (\gamma (v) \,\nabla u-u \,\xi (v) \,\nabla v\big )+\mu \, u\,(1-u), & x\in \Omega , \ t>0, \\ v_{t}=\Delta v-uv, & x\in \Omega , \ t>0, \end{array}\right.} …”
Get full text
Article -
12
Global Solutions for a Nonlocal Problem with Logarithmic Source Term
Published 2024-07-01“…The current paper discusses the global existence and asymptotic behavior of solutions of the following new nonlocal problem$$ u_{tt}- M\left(\displaystyle \int_{\Omega}|\nabla u|^{2}\, dx\right)\triangle u + \delta u_{t}= |u|^{\rho-2}u \log|u|, \quad \text{in}\ \Omega \times ]0,\infty[, $$where\begin{equation*}M(s)=\left\{\begin{array}{ll}{a-bs,}&{\text{for}\ s \in [0,\frac{a}{b}[,}\\{0,}&{\text{for}\ s \in [\frac{a}{b}, +\infty[.}…”
Get full text
Article -
13
Enhancing Food Security via selecting Superior Camelina (Camelina sativa L.) parents: a positive approach incorporating pheno-morphological traits, fatty acids composition, and Toc...
Published 2025-01-01“…The analysis unveiled that the average content of omega-3, omega-6, and omega-9 fatty acids in the examined lines was approximately 33%, 20%, and 17%, respectively. …”
Get full text
Article -
14
Path Planning For A Mobile Robot Using The Chessboard Method And Gray Wolf Optimization Algorithm In Static And Dynamic Environments
Published 2024-09-01“…Four types of grey wolves, namely alpha, beta, delta, and omega, are employed to simulate the leadership hierarchy. …”
Get full text
Article