Search alternatives:
structures » structural (Expand Search)
convolution » convolutional (Expand Search)
Showing 161 - 180 results of 481 for search '(structures OR structure) global convolution', query time: 0.10s Refine Results
  1. 161

    ViT-DualAtt: An efficient pornographic image classification method based on Vision Transformer with dual attention by Zengyu Cai, Liusen Xu, Jianwei Zhang, Yuan Feng, Liang Zhu, Fangmei Liu

    Published 2024-12-01
    “…The model adopts a CNN-Transformer hierarchical structure, combining the strengths of Convolutional Neural Networks (CNNs) and Transformers to effectively capture and integrate both local and global features, thereby enhancing feature representation accuracy and diversity. …”
    Get full text
    Article
  2. 162

    MRP-YOLO: An Improved YOLOv8 Algorithm for Steel Surface Defects by Shuxian Zhu, Yajie Zhou

    Published 2024-12-01
    “…It is further proposed that the RepHead detection head approximates the multi-branch structure of the original training by a single convolution operation. …”
    Get full text
    Article
  3. 163

    EEG-based schizophrenia diagnosis using deep learning with multi-scale and adaptive feature selection by Alanoud Al Mazroa, Majdy M. Eltahir, Shouki A. Ebad, Faiz Abdullah Alotaibi, Venkatachalam K, Jaehyuk Cho

    Published 2025-05-01
    “…With the help of atrous convolutions, local and global dependencies within the EEGs can be effectively modeled in this way. …”
    Get full text
    Article
  4. 164

    Dynamic Graph Attention Network for Skeleton-Based Action Recognition by Zhenhua Li, Fanjia Li, Gang Hua

    Published 2025-04-01
    “…To address these challenges, we propose a Dynamic Graph Attention Network (DGAN) that dynamically integrates local structural features and global spatiotemporal dependencies. …”
    Get full text
    Article
  5. 165

    Anterior Cruciate Ligament (ACL) Tear Detection Using Hybrid CNN Transformer by Suthir Sriram, Deependra K. Singh, D. V. Sairam, Nivethitha Vijayaraj, Thangavel Murugan

    Published 2025-01-01
    “…Firstly, MambaConvT utilizes multi-core convolutional networks to achieve higher extraction capability of the ACL tear specific local features from structural MR (Magnetic Resonance) images. …”
    Get full text
    Article
  6. 166

    GKCAE: A graph-attention-based encoder for fine-grained semantic segmentation of high-voltage transmission corridors scenario LiDAR data by Su Zhang, Haibo Liu, Jingguo Rong, Yaping Zhang

    Published 2025-08-01
    “…GKCAE first captures local geometric features using Kernel Point Convolution, and then models inter-class spatial relationships through Graph Edge-Conditioned Convolution to incorporate global contextual information. …”
    Get full text
    Article
  7. 167

    GLAI-Net: Global–Local Awareness Integrated Network for Semantic Change Detection in Remote Sensing Images by Qing Ding, Fengyan Wang, Mingchang Wang, Ying Zhang, Gui Cheng

    Published 2025-01-01
    “…We design a parallel encoding structure and utilize convolutional neural networks and transformer to achieve multi-scale modeling of images and enhance feature expression ability. …”
    Get full text
    Article
  8. 168

    Multiscale Wavelet and Graph Network With Spectral Self-Attention for Hyperspectral Image Classification by Anyembe C. Shibwabo, Zou Bin, Tahir Arshad, Jorge Abraham Rios Suarez

    Published 2025-01-01
    “…Third, DH-GCN constructs a deep graph structure to model spatial topology and overcome oversmoothing. …”
    Get full text
    Article
  9. 169

    Swin-GAT Fusion Dual-Stream Hybrid Network for High-Resolution Remote Sensing Road Extraction by Hongkai Zhang, Hongxuan Yuan, Minghao Shao, Junxin Wang, Suhong Liu

    Published 2025-06-01
    “…By decoupling detailed feature extraction from global context modeling, the proposed framework more faithfully represents complex road structures. …”
    Get full text
    Article
  10. 170

    YOLO-AFR: An Improved YOLOv12-Based Model for Accurate and Real-Time Dangerous Driving Behavior Detection by Tianchen Ge, Bo Ning, Yiwu Xie

    Published 2025-05-01
    “…YOLO-AFR builds upon the YOLOv12 architecture and introduces three key innovations: (1) the redesign of the original A2C2f module by introducing a Feature-Refinement Feedback Network (FRFN), resulting in a new A2C2f-FRFN structure that adaptively refines multiscale features, (2) the integration of self-calibrated convolution (SC-Conv) modules in the backbone to enhance multiscale contextual modeling, and (3) the employment of a SEAM-based detection head to improve global contextual awareness and prediction accuracy. …”
    Get full text
    Article
  11. 171

    Enhancing leaf disease classification using GAT-GCN hybrid model by Shyam Sundhar, Riya Sharma, Priyansh Maheshwari, Suvidha Rupesh Kumar, T. Sunil Kumar

    Published 2025-08-01
    “…Agriculture plays a critical role in the global economy, providing livelihoods and ensuring food security for billions. …”
    Get full text
    Article
  12. 172

    VE-GCN: A Geography-Aware Approach for Polyline Simplification in Cartographic Generalization by Siqiong Chen, Anna Hu, Yongyang Xu, Haitao Wang, Zhong Xie

    Published 2025-02-01
    “…To enhance the graph convolutional structure for capturing crucial geographic element features and simultaneously learning vertex and edge features within map polylines, this study introduces a joint vertex–edge feature graph convolutional network (VE-GCN). …”
    Get full text
    Article
  13. 173
  14. 174

    CNN–Transformer gated fusion network for medical image super-resolution by Juanjuan Qin, Jian Xiong, Zhantu Liang

    Published 2025-05-01
    “…The network consists of two branches, one is the global branch based on residual Transformer network, and the other is the local branch based on dynamic convolutional neural network. …”
    Get full text
    Article
  15. 175

    Directed Knowledge Graph Embedding Using a Hybrid Architecture of Spatial and Spectral GNNs by Guoqiang Hou, Qiwen Yu, Fan Chen, Guang Chen

    Published 2024-11-01
    “…To address this limitation, a directed spectral graph transformer (DSGT), a hybrid architecture model, is constructed by integrating the graph transformer and directed spectral graph convolution networks. The graph transformer leverages multi-head attention mechanisms to capture the global connectivity of the feature graph from different perspectives in the spatial domain, which bridges the gap between frequency responses and, further, naturally couples the graph transformer and directed graph convolutional neural networks (GCNs). …”
    Get full text
    Article
  16. 176

    SGRD: A Ship Group Relationship Description Method Based on Scene Graph Generation With a Global-Local Context Fusion Network by Qianwen Rui, Yanan You, Jingyi Cao, Kaiwen Zhu, Yuanyuan Qiao

    Published 2025-01-01
    “…The proposed network integrates global feature fusion through a transformer-based self-attention mechanism and enhances local feature fusion using a graph convolutional network focused on object-specific graph structures. …”
    Get full text
    Article
  17. 177

    Enhancement of Underwater Images through Parallel Fusion of Transformer and CNN by Xiangyong Liu, Zhixin Chen, Zhiqiang Xu, Ziwei Zheng, Fengshuang Ma, Yunjie Wang

    Published 2024-08-01
    “…Subsequently, to extract global features, both temporal and frequency domain features are incorporated to construct the convolutional neural network. …”
    Get full text
    Article
  18. 178

    Time-Series Forecasting Method Based on Hierarchical Spatio-Temporal Attention Mechanism by Zhiguo Xiao, Junli Liu, Xinyao Cao, Ke Wang, Dongni Li, Qian Liu

    Published 2025-06-01
    “…Breaking through traditional structural designs, the model employs a Squeeze-and-Excitation Network (SENet) to reconstruct the convolutional layers of the Temporal Convolutional Network (TCN), strengthening the feature expression of key time steps through dynamic channel weight allocation to address the redundancy issue of traditional causal convolutions in local pattern capture. …”
    Get full text
    Article
  19. 179

    Bird Species Detection Net: Bird Species Detection Based on the Extraction of Local Details and Global Information Using a Dual-Feature Mixer by Chaoyang Li, Zhipeng He, Kai Lu, Chaoyang Fang

    Published 2025-01-01
    “…The dual-branch feature mixer extracts features from dichotomous feature segments using global attention and deep convolution, expanding the network’s receptive field and achieving a strong inductive bias, allowing the network to distinguish between similar local details. …”
    Get full text
    Article
  20. 180

    Deep Time Series Intelligent Framework for Power Data Asset Evaluation by Lihong Ge, Xin Li, Li Wang, Jian Wei, Bo Huang

    Published 2025-01-01
    “…In the evaluation of the complex and rich Solar-Power dataset and Electricity dataset, TSENet achieved significant performance improvements over other state-of-the-art baseline methods.Through the synergistic design of deep convolutional structures and an efficient memory mechanism, it effectively addresses issues such as inadequate modeling of long-term dependencies, insufficient extraction of short-term features, and high prediction volatility, thereby significantly enhancing both the accuracy and robustness of forecasting in power asset evaluation tasks.…”
    Get full text
    Article