Search alternatives:
structures » structural (Expand Search)
Showing 441 - 460 results of 481 for search '(structures OR structure) global (convolution OR convolutional)', query time: 0.10s Refine Results
  1. 441

    An improved U-net and attention mechanism-based model for sugar beet and weed segmentation by Yadong Li, Ruinan Guo, Rujia Li, Rongbiao Ji, Mengyao Wu, Dinghao Chen, Cong Han, Ruilin Han, Yongxiu Liu, Yuwen Ruan, Jianping Yang, Jianping Yang

    Published 2025-01-01
    “…To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.MethodsThe model adopts the encoder-decoder structure of UNet, utilizing MaxViT (Multi-Axis Vision Transformer) as the encoder to capture both global and local features within images. …”
    Get full text
    Article
  2. 442

    FinSafeNet: securing digital transactions using optimized deep learning and multi-kernel PCA(MKPCA) with Nyström approximation by Ahmad Raza Khan, Shaik Shakeel Ahamad, Shailendra Mishra, Mohd Abdul Rahim Khan, Sunil Kumar Sharma, Abdullah AlEnizi, Osama Alfarraj, Majed Alowaidi, Manoj Kumar

    Published 2024-11-01
    “…FinSafeNet is based on a Bi-Directional Long Short-Term Memory (Bi-LSTM), a Convolutional Neural Network (CNN) and an additional dual attention mechanism to study the transaction data and influence the observation of various security threats. …”
    Get full text
    Article
  3. 443

    Improved Face Image Super-Resolution Model Based on Generative Adversarial Network by Qingyu Liu, Yeguo Sun, Lei Chen, Lei Liu

    Published 2025-05-01
    “…Furthermore, a multi-scale discriminator with a weighted sub-discriminator loss is developed to balance global structural and local detail generation quality. …”
    Get full text
    Article
  4. 444

    Anomaly traffic detection method based on data augmentation and feature mining by AN Yishuai, FU Yu, YU Yihan, LIU Taotao

    Published 2025-01-01
    “…Finally, a multi-layer graph convolutional network with a hierarchical attention mechanism was designed, in which local and global features were hierarchically extracted and fused through a multi-level neighborhood aggregation strategy, significantly enhancing the model’s capability to identify key features. …”
    Get full text
    Article
  5. 445

    Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input by Jinqiang Wang, Zhanjie Li, Ling Zhou, Chi Ma, Wenchao Sun

    Published 2025-03-01
    “…By employing a 1D Convolutional Neural Networks (1D CNN), streamflow simulations from multiple models are integrated and a Shapley Additive exPlanations (SHAP) interpretability analysis was conducted to examine the contributions of individual models on ensemble streamflow simulation. …”
    Get full text
    Article
  6. 446

    Downhole Coal–Rock Recognition Based on Joint Migration and Enhanced Multidimensional Full-Scale Visual Features by Bin Jiao, Chuanmeng Sun, Sichao Qin, Wenbo Wang, Yu Wang, Zhibo Wu, Yong Li, Dawei Shen

    Published 2025-05-01
    “…Additionally, a multi-scale luminance adjustment module is integrated to merge features across perceptual ranges, mitigating localized brightness anomalies such as overexposure. The model is structured around an encoder–decoder backbone, enhanced by a full-scale connectivity mechanism, a residual attention block with dilated convolution, Res2Block elements, and a composite loss function. …”
    Get full text
    Article
  7. 447

    Research on Diffusion Kurtosis Imaging of the Brain Based on Deep Learning by Rui Chen, Jingwen Yue, Rong Li, Zijian Jia

    Published 2025-01-01
    “…The DKI-Transformer model can extract global voxel correlation characteristics, the estimation results have a high structural similarity index compared to the reference labeling and exhibit distinct boundaries of microscopic features. …”
    Get full text
    Article
  8. 448

    Enhancing Crop Health: Advanced Machine Learning Techniques for Prediction Disease in Palm Oil Tree by Nandy Manish, Kumar Yalakala Dinesh

    Published 2025-01-01
    “…This study builds predictive models by using a palmd database comprised of the large datasets of palm oil tree health indicators, environmental factors and historical disease outbreaks to identify early signs of disease with high accuracy.To analyze both structured as well as unstructured data multiple machine learning algorithms were used such as Random Forest, Support Vector Machines, Convolution Neural Networks. …”
    Get full text
    Article
  9. 449

    Automatic Mushroom Species Classification Model for Foodborne Disease Prevention Based on Vision Transformer by Boyuan Wang

    Published 2022-01-01
    “…Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum. …”
    Get full text
    Article
  10. 450

    A New and Tested Ionospheric TEC Prediction Method Based on SegED-ConvLSTM by Yuanhang Liu, Yingkui Gong, Hao Zhang, Ziyue Hu, Guang Yang, Hong Yuan

    Published 2025-03-01
    “…We compared our model with traditional image-based models such as convolutional neural networks (CNNs), convolutional long short-term memory networks (ConvLSTMs), a self-attention mechanism-integrated ConvLSTM (SAM-ConvLSTM) model, and one-day predicted ionospheric products (C1PG) provided by the Center for Orbit Determination in Europe (CODE). …”
    Get full text
    Article
  11. 451

    Traffic environment perception algorithm based on multi-task feature fusion and orthogonal attention by Zhengfeng LI, Mingen ZHONG, Yihong ZHANG, Kang FAN, Zhiying DENG, Jiawei TAN

    Published 2025-06-01
    “…A notable advancement introduced in MTEPN is the cross-task feature aggregation structure. This module promotes information complementarity between tasks by implicitly modeling the global context relationships among different visual tasks. …”
    Get full text
    Article
  12. 452

    MRFP-Mamba: Multi-Receptive Field Parallel Mamba for Hyperspectral Image Classification by Xiaofei Yang, Lin Li, Suihua Xue, Sihuan Li, Wanjun Yang, Haojin Tang, Xiaohui Huang

    Published 2025-06-01
    “…The proposed MRFP-Mamba introduces two key innovation modules: (1) A multi-receptive-field convolutional module employing parallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><mn>1</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>×</mo><mn>5</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7</mn><mo>×</mo><mn>7</mn></mrow></semantics></math></inline-formula> kernels to capture fine-to-coarse spatial features, thereby improving discriminability for multi-scale objects; and (2) a parameter-optimized Vision Mamba branch that models global spatial–spectral relationships through structured state space mechanisms. …”
    Get full text
    Article
  13. 453

    TDFNet: twice decoding V-Mamba-CNN Fusion features for building extraction by Wenlong Wang, Peng Yu, Mengmeng Li, Xiaojing Zhong, Yuanrong He, Hua Su, Yunxuan Zhou

    Published 2025-07-01
    “…A bidirectional fusion module (BFM) is then designed to comprehensively integrate spatial details and global information, thereby enabling accurate identification of boundaries between adjacent buildings, and maintaining the structural integrity of buildings to avoid internal holes. …”
    Get full text
    Article
  14. 454

    Enhanced Image Retrieval Using Multiscale Deep Feature Fusion in Supervised Hashing by Amina Belalia, Kamel Belloulata, Adil Redaoui

    Published 2025-01-01
    “…By leveraging multiscale features from multiple convolutional layers, MDFF-SH ensures the preservation of fine-grained image details while maintaining global semantic integrity, achieving a harmonious balance that enhances retrieval precision and recall. …”
    Get full text
    Article
  15. 455

    Distinct brain age gradients across the adult lifespan reflect diverse neurobiological hierarchies by Nicholas Riccardi, Alex Teghipco, Sarah Newman-Norlund, Roger Newman-Norlund, Ida Rangus, Chris Rorden, Julius Fridriksson, Leonardo Bonilha

    Published 2025-05-01
    “…We address this gap by leveraging a data-driven, region-specific brain age approach in 335 neurologically intact adults, using a convolutional neural network (volBrain) to estimate regional brain ages directly from structural MRI without a predefined set of morphometric properties. …”
    Get full text
    Article
  16. 456

    Multi-class rice seed recognition based on deep space and channel residual network combined with double attention mechanism. by Tingyuan Zhang, Changsheng Zhang, Zhongyi Yang, Meng Wang, Fujie Zhang, Dekai Li, Sen Yang

    Published 2025-01-01
    “…The RSCD-Net architecture consists of 16 layers of SCR-Blocks, structured into four convolutional stages with 3, 4, 6, and 3 units, respectively. …”
    Get full text
    Article
  17. 457

    HTCNN-Attn: a fine-grained hierarchical multi-label deep learning model for disaster emergency information intelligent extraction from social media by Shanshan Li, Qingjie Liu, Xiaoling Sun

    Published 2025-07-01
    “…It integrates a three-level tree-structured labeling architecture, Transformer-based global feature extraction, convolutional neural network (CNN) layers for local pattern capture, and a hierarchical attention mechanism. …”
    Get full text
    Article
  18. 458

    A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies by Jin Lu, Zhongji Cao, Jin Wang, Zhao Wang, Jia Zhao, Minjie Zhang

    Published 2025-07-01
    “…To address these issues, this study proposes a novel picking point localization method for table grapes based on an instance segmentation network called Progressive Global-Local Structure-Sensitive Segmentation (PGSS-YOLOv11s) and a simple combination strategy of morphological operators. …”
    Get full text
    Article
  19. 459

    DRDA-Net: Deep Residual Dual-Attention Network with Multi-Scale Approach for Enhancing Liver and Tumor Segmentation from CT Images by Wail M. Idress, Yuqian Zhao, Khalid A. Abouda, Shaodi Yang

    Published 2025-02-01
    “…Additionally, we introduce a unique pre-processing pipeline employing a two-channel denoising technique using convolutional neural networks (CNNs) and stationary wavelet transforms (SWTs) to reduce noise while preserving structural details. …”
    Get full text
    Article
  20. 460

    Lightweight Road Environment Segmentation using Vector Quantization by J. Kwag, A. Yilmaz, C. Toth

    Published 2025-07-01
    “…Numerous works based on Fully Convolutional Networks (FCNs) and Transformer architectures have been proposed to leverage local and global contextual learning for efficient and accurate semantic segmentation. …”
    Get full text
    Article