Search alternatives:
structures » structural (Expand Search)
Showing 261 - 280 results of 481 for search '(structures OR structure) global (convolution OR convolutional)', query time: 0.11s Refine Results
  1. 261

    RETINA: Reconstruction-based pre-trained enhanced TransUNet for electron microscopy segmentation on the CEM500K dataset. by Cheng Xing, Ronald Xie, Gary D Bader

    Published 2025-05-01
    “…We developed the RETINA method, which combines pre-training on the large, unlabeled CEM500K EM image dataset with a hybrid neural-network model architecture that integrates both local (convolutional layer) and global (transformer layer) image processing to learn from manual image annotations. …”
    Get full text
    Article
  2. 262

    A New Hybrid ConvViT Model for Dangerous Farm Insect Detection by Anil Utku, Mahmut Kaya, Yavuz Canbay

    Published 2025-02-01
    “…This study proposes a novel hybrid convolution and vision transformer model (ConvViT) designed to detect harmful insect species that adversely affect agricultural production and play a critical role in global food security. …”
    Get full text
    Article
  3. 263

    Attention residual network for medical ultrasound image segmentation by Honghua Liu, Peiqin Zhang, Jiamin Hu, Yini Huang, Shanshan Zuo, Lu Li, Mailan Liu, Chang She

    Published 2025-07-01
    “…Additionally, a spatial hybrid convolution module is integrated to augment the model’s ability to extract global information and deepen the vertical architecture of the network. …”
    Get full text
    Article
  4. 264

    Remote sensing image Super-resolution reconstruction by fusing multi-scale receptive fields and hybrid transformer by Denghui Liu, Lin Zhong, Haiyang Wu, Songyang Li, Yida Li

    Published 2025-01-01
    “…The discriminator combines multi-scale convolution, global Transformer, and hierarchical feature discriminators, providing a comprehensive and refined evaluation of image quality. …”
    Get full text
    Article
  5. 265

    TMAR: 3-D Transformer Network via Masked Autoencoder Regularization for Hyperspectral Sharpening by Zeinab Dehghan, Jingxiang Yang, Mehran Yazdi, Abdolraheem Khader, Liang Xiao

    Published 2025-01-01
    “…In this study, we focus on leveraging the power of CNN and transformer models and propose a multistage deep transformer-based super-resolution network that is regularized via an asymmetric autoencoder structure. In addition, we utilize a 3-D convolution layer in the light transformer structure because it allows for more flexible computation of correlations between HSI layers and better capturing of dependencies within spectral–spatial features. …”
    Get full text
    Article
  6. 266

    Application of Partial Differential Equation Image Classification Methods to the Aesthetic Evaluation of Images by Feifeng Liu, Weihu Wang

    Published 2021-01-01
    “…The structure of a convolution kernel learned by using parallel network structure achieves better classification performance. …”
    Get full text
    Article
  7. 267

    Non-end-to-end adaptive graph learning for multi-scale temporal traffic flow prediction. by Kang Xu, Bin Pan, MingXin Zhang, Xuan Zhang, XiaoYu Hou, JingXian Yu, ZhiZhu Lu, Xiao Zeng, QingQing Jia

    Published 2025-01-01
    “…The method incorporates a multi-scale temporal attention module and a multi-scale temporal convolution module to extract multi-scale information. …”
    Get full text
    Article
  8. 268

    Foreign object detection on coal conveyor belt enhanced by attention mechanism by ZHANG Yang, CHENG Zhiyu, CHEN Yunjiang, ZHANG Jiannan, YUAN Wensheng, ZHANG Hui

    Published 2025-06-01
    “…A unique combination of convolution and pooling operations was used by the CPCA attention mechanism to perform global average pooling and maximum pooling on the input feature map, multi-dimensional feature information was deeply mined, and then attention weights for each channel and spatial position were accurately generated through nonlinear transformation, guiding the model to focus on the key feature areas of foreign objects and enhance feature extraction capabilities. …”
    Get full text
    Article
  9. 269

    A VAN-Based Multi-Scale Cross-Attention Mechanism for Skin Lesion Segmentation Network by Shuang Liu, Zeng Zhuang, Yanfeng Zheng, Simon Kolmanic

    Published 2023-01-01
    “…Although many neural networks based on U-shaped structures and methods, such as skip connections have achieved excellent results in medical image segmentation tasks, the properties of convolutional operations limit their ability to effectively learn local and global features. …”
    Get full text
    Article
  10. 270

    3D-SCUMamba: An Abdominal Tumor Segmentation Model by Juwita, Ghulam Mubashar Hassan, Amitava Datta

    Published 2025-01-01
    “…Existing deep learning models typically adopt encoder-decoder architectures integrating convolutional layers with global dependency modeling to capture broader contextual information around tumors. …”
    Get full text
    Article
  11. 271

    HMA-Net: a hybrid mixer framework with multihead attention for breast ultrasound image segmentation by Soumya Sara Koshy, L. Jani Anbarasi

    Published 2025-06-01
    “…The model achieved a Jaccard index of 98.04% and 94.84% and a Dice similarity coefficient of 99.01% and 97.35% on the BUSI and BrEaST datasets, respectively.DiscussionThe ConvMixer and ConvNeXT modules are integrated with convolution-enhanced multihead attention, which enhances the model's ability to capture local and global contextual information. …”
    Get full text
    Article
  12. 272

    WDM-UNet: A Wavelet-Deformable Gated Fusion Network for Multi-Scale Retinal Vessel Segmentation by Xinlong Li, Hang Zhou

    Published 2025-08-01
    “…To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that integrates spatial and wavelet-domain representations to simultaneously enhance the local detail and global context. The encoder combines a Deformable Convolution Encoder (DCE), which adaptively models complex vascular structures through dynamic receptive fields, and a Wavelet Convolution Encoder (WCE), which captures the semantic and structural contexts through low-frequency components and hierarchical wavelet convolution. …”
    Get full text
    Article
  13. 273

    LEAD-YOLO: A Lightweight and Accurate Network for Small Object Detection in Autonomous Driving by Yunchuan Yang, Shubin Yang, Qiqing Chan

    Published 2025-08-01
    “…The proposed framework incorporates three innovative components: First, the Backbone integrates a lightweight Convolutional Gated Transformer (CGF) module, which employs normalized gating mechanisms with residual connections, and a Dilated Feature Fusion (DFF) structure that enables progressive multi-scale context modeling through dilated convolutions. …”
    Get full text
    Article
  14. 274

    DSS-MobileNetV3: An Efficient Dynamic-State-Space- Enhanced Network for Concrete Crack Segmentation by Haibo Li, Yong Cheng, Qian Zhang, Lingkun Chen

    Published 2025-06-01
    “…The DSS-MobileNetV3 adopts a U-shaped encoder–decoder architecture, and a dynamic-state-space (DSS) block is designed into the encoder to improve the MobileNetV3 bottleneck module in modeling global dependencies. The DSS block improves the MobileNetV3 model in structural perception and global dependency modeling for complex crack morphologies by integrating dynamic snake convolution and a state space model. …”
    Get full text
    Article
  15. 275

    Diagnosis of Alzheimer’s disease using brain $$^{18}\textrm{F}$$ -FDG PET imaging based on a state space model by Yufang Dong, Yonglin Chen, Zhe Jin, Xingbo Dong

    Published 2025-07-01
    “…Building on this, we optimized the original purely convolutional structure into a hybrid architecture combining convolution and Transformer layers. …”
    Get full text
    Article
  16. 276

    Attention-enhanced StrongSORT for robust vehicle tracking in complex environments by Wei Xu, Xiaodong Du, Ruochen Li, Bingjie Li, Yuhu Jiao, Lei Xing

    Published 2025-05-01
    “…To address these challenges, we propose AE-StrongSORT (Attention-Enhanced StrongSORT), an attention-enhanced tracking framework featuring three systematic innovations: first, the GAM-YOLO (global attention mechanism-YOLO)hybrid architecture integrates multi-scale feature fusion with a global attention mechanism (GC2f structure). …”
    Get full text
    Article
  17. 277

    YOLOv10-kiwi: a YOLOv10-based lightweight kiwifruit detection model in trellised orchards by Jie Ren, Wendong Wang, Yuan Tian, Jinrong He

    Published 2025-08-01
    “…Second, to further reduce model complexity, a novel C2fDualHet module is proposed by integrating two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a replacement for the traditional Bottleneck structure. …”
    Get full text
    Article
  18. 278
  19. 279

    A high-precision edge detection technique for magnetic anomaly signals based on a self-attention mechanism by Ju Haihua, Wang Li, Yang Jie, Liu Gaochuan, Xia Zhong, Jiao Jian, Zhang Le, Dai Bo

    Published 2025-07-01
    “…Magnetic data boundary detection is a key technology in potential field data processing, providing an effective basis for the division of geological units and fault structures. It holds significant importance in geological structure analysis and mineral exploration. …”
    Get full text
    Article
  20. 280