Search alternatives:
structured » structure (Expand Search)
structures » structure (Expand Search)
structural » structure (Expand Search)
Showing 441 - 460 results of 481 for search '(structured OR (structures OR structural)) global (convolution OR convolutional)', query time: 0.20s Refine Results
  1. 441

    Bidirectional Mamba with Dual-Branch Feature Extraction for Hyperspectral Image Classification by Ming Sun, Jie Zhang, Xiaoou He, Yihe Zhong

    Published 2024-10-01
    “…The HSI classification methods based on convolutional neural networks (CNNs) have greatly improved the classification performance. …”
    Get full text
    Article
  2. 442

    A Lightweight and Rapid Dragon Fruit Detection Method for Harvesting Robots by Fei Yuan, Jinpeng Wang, Wenqin Ding, Song Mei, Chenzhe Fang, Sunan Chen, Hongping Zhou

    Published 2025-05-01
    “…The method builds upon YOLOv10 and integrates Gated Convolution (gConv) into the C2f module, forming a novel C2f-gConv structure that effectively reduces model parameters and computational complexity. …”
    Get full text
    Article
  3. 443

    MFMamba: A Mamba-Based Multi-Modal Fusion Network for Semantic Segmentation of Remote Sensing Images by Yan Wang, Li Cao, He Deng

    Published 2024-11-01
    “…Specifically, the network employs a dual-branch encoding structure, consisting of a CNN-based main encoder for extracting local features from high-resolution remote sensing images (HRRSIs) and of a Mamba-based auxiliary encoder for capturing global features on its corresponding digital surface model (DSM). …”
    Get full text
    Article
  4. 444

    A method for identifying gully-type debris flows based on adaptive multi-scale feature extraction by Qiuyu Liu, Ting Wang, Zhijie Zheng, Baoyun Wang

    Published 2025-12-01
    “…First, the feature extraction component consists of a dual-branch structure with a global feature extraction part based on self-attention mechanisms and a local feature extraction part based on multi-scale methods, designed to extract gully features at different scales and establish connections among them. …”
    Get full text
    Article
  5. 445

    A secured accreditation and equivalency certification using Merkle mountain range and transformer based deep learning model for the education ecosystem by Sumathy Krishnan, Surendran Rajendran, Mohammad Zakariah

    Published 2025-07-01
    “…TCRN employs Bi-GRU to retain long-term academic trends, Depth-wise separable convolutions (DSC) to concentrate on course-specific information, and BERT to capture global semantic context. …”
    Get full text
    Article
  6. 446

    Extensive identification of landslide boundaries using remote sensing images and deep learning method by Chang-dong Li, Peng-fei Feng, Xi-hui Jiang, Shuang Zhang, Jie Meng, Bing-chen Li

    Published 2024-04-01
    “…SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block (ASPC) with a coding structure that reduces model complexity. …”
    Get full text
    Article
  7. 447

    YOLOv8n-WSE-Pest: A Lightweight Deep Learning Model Based on YOLOv8n for Pest Identification in Tea Gardens by Hongxu Li, Wenxia Yuan, Yuxin Xia, Zejun Wang, Junjie He, Qiaomei Wang, Shihao Zhang, Limei Li, Fang Yang, Baijuan Wang

    Published 2024-09-01
    “…The addition of the Spatial and Channel Reconstruction Convolution structure in the Backbone layer reduces redundant spatial and channel features, thereby reducing the model’s complexity. …”
    Get full text
    Article
  8. 448

    GHFormer-Net: Towards more accurate small green apple/begonia fruit detection in the nighttime by Meili Sun, Liancheng Xu, Rong Luo, Yuqi Lu, Weikuan Jia

    Published 2022-07-01
    “…Specifically, PVTv2-B1 based on Transformer is applied as the backbone network to extract feature information from the global receptive, which breaks the limitation that spatial convolution is utilized to extract information from the local area; Next, with the help of FPN, shallow features and high-level features with rich semantic information are incorporated by lateral connections and a top-down structure to generate multi-scale feature maps; Then, a detector of RetinaNet is applied to detect green fruits. …”
    Get full text
    Article
  9. 449

    Research on CTSA-DeepLabV3+ Urban Green Space Classification Model Based on GF-2 Images by Ruotong Li, Jian Zhao, Yanguo Fan

    Published 2025-06-01
    “…As an important part of urban ecosystems, urban green spaces play a key role in ecological environmental protection and urban spatial structure optimization. However, due to the complex morphology and high degree of fragmentation of urban green spaces, it is still challenging to effectively distinguish urban green space types from high spatial resolution images. …”
    Get full text
    Article
  10. 450

    Modeling energy consumption indexes of an industrial cement ball mill for sustainable production by Saeed Chehreh Chelgani, Rasoul Fatahi, Ali Pournazari, Hamid Nasiri

    Published 2025-05-01
    “…Abstract The total cement energy consumption is around 5% of global industrial energy usage. In cement plants, mills consume half of this energy for dry grinding particles. …”
    Get full text
    Article
  11. 451

    Dynamic Ensemble Selection for EEG Signal Classification in Distributed Data Environments by Małgorzata Przybyła-Kasperek, Jakub Sacewicz

    Published 2025-05-01
    “…Additionally, we tested a convolutional neural network specifically designed for EEG data, ensuring our results are compared against advanced deep learning methods. …”
    Get full text
    Article
  12. 452

    DASNet a dual branch multi level attention sheep counting network by Yini Chen, Ronghua Gao, Qifeng Li, Hongtao Zhao, Rong Wang, Luyu Ding, Xuwen Li

    Published 2025-07-01
    “…DASNet is built on a modified VGG–19 architecture, where a dual-branch structure is employed to integrate both shallow and deep features. …”
    Get full text
    Article
  13. 453

    GhostConv+CA-YOLOv8n: a lightweight network for rice pest detection based on the aggregation of low-level features in real-world complex backgrounds by Fei Li, Yang Lu, Qiang Ma, Shuxin Yin, Rui Zhao

    Published 2025-08-01
    “…To overcome these limitations, this paper introduces GhostConv+CA-YOLOv8n, a lightweight object detection framework was proposed, which incorporates several innovative features: GhostConv replaces standard convolutional operations with computationally efficient ghost modules in the YOLOv8n’s backbone structure, reducing parameters by 40,458 while maintaining feature richness; a Context Aggregation (CA) module is applied after the large and medium-sized feature maps were output by the YOLOv8n’s neck structure. …”
    Get full text
    Article
  14. 454

    Liver Semantic Segmentation Method Based on Multi-Channel Feature Extraction and Cross Fusion by Chenghao Zhang, Lingfei Wang, Chunyu Zhang, Yu Zhang, Peng Wang, Jin Li

    Published 2025-06-01
    “…Secondly, an atrous spatial pyramid pooling (ASPP) module is incorporated into the bottleneck layer to capture features at various receptive fields using dilated convolutions, while global pooling is applied to enhance the acquisition of contextual information and ensure efficient feature transmission. …”
    Get full text
    Article
  15. 455

    Dynamic atrous attention and dual branch context fusion for cross scale Building segmentation in high resolution remote sensing imagery by Yaohui Liu, Shuzhe Zhang, Xinkai Wang, Rui Zhai, Hu Jiang, Lingjia Kong

    Published 2025-08-01
    “…Among them, we introduced the Shift Operation module and the Self-Attention module, which adopt a dual-branch structure to respectively capture local spatial dependencies and global correlations, and perform weight coupling to achieve highly complementary contextual information fusion. …”
    Get full text
    Article
  16. 456

    SCCA-YOLO: Spatial Channel Fusion and Context-Aware YOLO for Lunar Crater Detection by Jiahao Tang, Boyuan Gu, Tianyou Li, Ying-Bo Lu

    Published 2025-07-01
    “…Specifically, the Context-Aware Module (CAM) employs a multi-branch dilated convolutional structure to enhance feature richness and expand the local receptive field, thereby strengthening the feature extraction capability. …”
    Get full text
    Article
  17. 457

    RMIS-Net: a fast medical image segmentation network based on multilayer perceptron by Binbin Zhang, Guoliang Xu, Yiying Xing, Nanjie Li, Deguang Li

    Published 2025-05-01
    “…To address the persistent challenges of computational complexity and efficiency limitations in existing methods, we propose RMIS-Net—an innovative lightweight segmentation network with three core components: a convolutional layer for preliminary feature extraction, a shift-based fully connected layer for parameter-efficient spatial modeling, and a tokenized multilayer perceptron for global context capture. …”
    Get full text
    Article
  18. 458

    Novel Deep Learning Framework for Evaporator Tube Leakage Estimation in Supercharged Boiler by Yulong Xue, Dongliang Li, Yu Song, Shaojun Xia, Jingxing Wu

    Published 2025-07-01
    “…To address these issues, this study proposes a novel deep learning framework (LSTM-CNN–attention), combining a Long Short-Term Memory (LSTM) network with a dual-pathway spatial feature extraction structure (ACNN) that includes an attention mechanism(attention) and a 1D convolutional neural network (1D-CNN) parallel pathway. …”
    Get full text
    Article
  19. 459

    Rice Disease Detection: TLI-YOLO Innovative Approach for Enhanced Detection and Mobile Compatibility by Zhuqi Li, Wangyu Wu, Bingcai Wei, Hao Li, Jingbo Zhan, Songtao Deng, Jian Wang

    Published 2025-04-01
    “…As a key global food reserve, rice disease detection technology plays an important role in promoting food production, protecting ecological balance and supporting sustainable agricultural development. …”
    Get full text
    Article
  20. 460

    Rice Leaf Disease Image Enhancement Based on Improved CycleGAN by YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan

    Published 2024-11-01
    “…These included user perception evaluation (UPE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and the performance of disease recognition within object detection frameworks. …”
    Get full text
    Article