Showing 761 - 780 results of 1,241 for search '(mode OR model) screening algorithm', query time: 0.16s Refine Results
  1. 761

    GB-SAR Engineering Interference Suppression Method Integrating Amplitude-Phase Feature Analysis and Robust Regression by Wenting Zhang, Tao Lai, Yuanhui Mo, Haifeng Huang, Qingsong Wang, Zhihua Zhou

    Published 2025-01-01
    “…Subsequently, a two-stage suppression model based on robust estimation theory is developed to effectively suppress interference. …”
    Get full text
    Article
  2. 762

    Optimization of the fermentation process for fructosyltransferase production by Aspergillus niger FS054 by Yingzi Wu, Yuewen Zhang, Xiaoyu Zhong, Huiling Xia, Mingyang Zhou, Wenjin He, Yi Zheng

    Published 2025-07-01
    “…Further optimization of cultivation conditions using a hybrid backpropagation neural network–genetic algorithm (BP–GA) model identified optimal parameters as pH 5.5, a liquid volume of 96.6 mL (in a 250 mL shaker), and inoculum size of 2.4 $$\times$$ × $$10^{4}$$ 10 4 spores/mL, achieving a final enzyme activity of 3422.14 ± 36.86 U/L (1.1% deviation from the predicted 3460 U/L), representing a 4.2-fold increase over initial conditions. …”
    Get full text
    Article
  3. 763

    Deep learning for smartphone-aided detection system of Helicobacter Pylori in gastric biopsy by Guanmeng Gao, Zihan Wei, Fei Pei, Yajie Du, Beiying Liu

    Published 2025-07-01
    “…All stained slides were scanned for analysis by the Faster-R-CNN with ResNet 50 or VGG16, then the model performance was evaluated. Furthermore, the real-time microscopic field, smartphone and AI algorithm were connected through 5G networks and the AI results were sent back to the smartphone for confirmation by the pathologists. …”
    Get full text
    Article
  4. 764

    Time-Distributed Vision Transformer Stacked With Transformer for Heart Failure Detection Based on Echocardiography Video by Mgs M. Luthfi Ramadhan, Adyatma W. A. Nugraha Yudha, Muhammad Febrian Rachmadi, Kevin Moses Hanky Jr Tandayu, Lies Dina Liastuti, Wisnu Jatmiko

    Published 2024-01-01
    “…This study proposed a novel deep learning model consisting of a time-distributed vision transformer stacked with a transformer. …”
    Get full text
    Article
  5. 765

    A FixMatch Framework for Alzheimer’s Disease Classification: Exploring the Trade-Off Between Supervision and Performance by Al Hossain, Umme Hani Konok, MD Tahsin, Raihan Ul Islam, Mohammad Rifat Ahmmad Rashid, Mohammad Shahadat Hossain, Karl Andersson

    Published 2025-01-01
    “…While experienced medical professionals can often identify AD through conventional assessment methods, limited resources and growing patient populations make large-scale and rapid screening increasingly necessary. In this work, we explore whether the FixMatch algorithm—a semi-supervised learning approach—can aid in classifying Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) by using the ADNI fMRI dataset of 5,182 images. …”
    Get full text
    Article
  6. 766

    Factors Influencing Misinformation Propagation: A Systemic Review by HAN Xi, LIAO Ke

    Published 2024-12-01
    “…This study constructs an integrated model of the influencing factors for misinformation propagation, which can provide direction for targeted interventions and algorithm design to mitigate the spread of misinformation. …”
    Get full text
    Article
  7. 767

    Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma by Shiyan Song, Wenfei Ge, Xiaochen Qi, Xiangyu Che, Qifei Wang, Guangzhen Wu

    Published 2025-07-01
    “…Radiomics features were screened using LASSO analysis. Eight ML algorithms were selected for diagnostic analysis of the test set. …”
    Get full text
    Article
  8. 768

    Cross-validation of the safe supplement screener (S3) predicting consistent third-party-tested nutritional supplement use in NCAA Division I athletes by Kinta D. Schott, Avaani Bhalla, Emma Armstrong, Ryan G. N. Seltzer, Floris C. Wardenaar

    Published 2025-01-01
    “…IntroductionThis cross-sectional study aimed to cross-validate an earlier developed algorithm-based screener and explore additional potential predictors for whether athletes will use third-party-tested (TPT) supplements.MethodsTo justify the initial model behind the supplement safety screener (S3) algorithm which predicts whether athletes will use TPT supplements, a cross-validation was performed using this independent dataset based on responses of a large group of collegiate NCAA DI athletes. …”
    Get full text
    Article
  9. 769
  10. 770

    Machine learning for predicting neoadjuvant chemotherapy effectiveness using ultrasound radiomics features and routine clinical data of patients with breast cancer by Pu Zhou, Pu Zhou, Hongyan Qian, Pengfei Zhu, Jiangyuan Ben, Jiangyuan Ben, Guifang Chen, Qiuyi Chen, Lingli Chen, Jia Chen, Ying He, Ying He

    Published 2025-01-01
    “…Subsequently, construction of clinical predictive models and Rad score joint clinical predictive models using ML algorithms for optimal diagnostic performance. …”
    Get full text
    Article
  11. 771

    Development and validation of a 3-D deep learning system for diabetic macular oedema classification on optical coherence tomography images by Mingzhi Zhang, Tsz Kin Ng, Yi Zheng, Guihua Zhang, Jian-Wei Lin, Ji Wang, Jie Ji, Peiwen Xie, Yongqun Xiong, Hanfu Wu, Cui Liu, Huishan Zhu, Jinqu Huang, Leixian Lin

    Published 2025-05-01
    “…The deep learning (DL) performance was compared with the diabetic retinopathy experts.Setting Data were collected from Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Chaozhou People’s Hospital and The Second Affiliated Hospital of Shantou University Medical College from January 2010 to December 2023.Participants 7790 volumes of 7146 eyes from 4254 patients were annotated, of which 6281 images were used as the development set and 1509 images were used as the external validation set, split based on the centres.Main outcomes Accuracy, F1-score, sensitivity, specificity, area under receiver operating characteristic curve (AUROC) and Cohen’s kappa were calculated to evaluate the performance of the DL algorithm.Results In classifying DME with non-DME, our model achieved an AUROCs of 0.990 (95% CI 0.983 to 0.996) and 0.916 (95% CI 0.902 to 0.930) for hold-out testing dataset and external validation dataset, respectively. …”
    Get full text
    Article
  12. 772

    Exploring the role of repetitive negative thinking in the transdiagnostic context of depression and anxiety in children by Kuiliang Li, Lei Ren, Xiao Li, Chang Liu, Xuejiao Tan, Ming Ji, Xi Luo

    Published 2025-08-01
    “…Network analysis revealed that RNT’s core features exhibited the highest bridge betweenness and bridge expected influence, indicating a critical mediating role in the co-occurrence of symptoms. The random forest model showed optimal predictive performance (AUC = 0.90, recall = 0.95), supporting its applicability for early screening. …”
    Get full text
    Article
  13. 773

    Proposed Comprehensive Methodology Integrated with Explainable Artificial Intelligence for Prediction of Possible Biomarkers in Metabolomics Panel of Plasma Samples for Breast Canc... by Cemil Colak, Fatma Hilal Yagin, Abdulmohsen Algarni, Ali Algarni, Fahaid Al-Hashem, Luca Paolo Ardigò

    Published 2025-03-01
    “…The SHapley Additive Descriptions (SHAP) analysis evaluated the optimal prediction model for interpretability. <i>Results</i>: The RF algorithm showed improved accuracy (0.963 ± 0.043) and sensitivity (0.977 ± 0.051); however, LightGBM achieved the highest ROC AUC (0.983 ± 0.028). …”
    Get full text
    Article
  14. 774
  15. 775

    3D Film Animation Image Acquisition and Feature Processing Based on the Latest Virtual Reconstruction Technology by Siwei Wu, Shan Xiao, Yihua Di, Cheng Di

    Published 2021-01-01
    “…Finally, the target 3D face is reconstructed using the feature points of the target face for model matching. The experimental results show that the algorithm reconstructs faces with high realism and accuracy, and the algorithm can reconstruct expression faces.…”
    Get full text
    Article
  16. 776

    Evaluating the role of insulin resistance in chronic intestinal health issues: NHANES study findings by Dongyao Zhao, Meihua Zhao, Bing Gao, He Lu

    Published 2025-05-01
    “…Key variables were selected via the Boruta algorithm and incorporated into weighted multivariate logistic regression models. …”
    Get full text
    Article
  17. 777

    LABORATORY OF CLINICAL IMMUNOLOGY N.V. SKLIFOSOVSKY RESEARCH INSTITUTE FOR EMERGENCY MEDICINE (HISTORY AND PRESENT) by M. A. Godkov, G. V. Bulava

    Published 2016-03-01
    “…During 45 years of work of immunological service formed the algorithm of the adequate immunological screening was formed, number of innovative methods of diagnosis was developed, the ideology of post-test counseling of patients by immunologists was created, mathematical methods of storage, modeling and processing of research results was introduced. …”
    Get full text
    Article
  18. 778

    Identification and Evaluation of Lipocalin-2 in Sepsis-Associated Encephalopathy via Machine Learning Approaches by Hu J, Chen Z, Wang J, Xu A, Sun J, Xiao W, Yang M

    Published 2025-03-01
    “…Subsequently, neuroinflammation-related genes were obtained to construct a neuroinflammation-related signature. The AddModuleScore algorithm was used to calculate neuroinflammation scores for each cell subpopulation, whereas the CellCall algorithm was used to assess the crosstalk between neutrophils and other cell subpopulations. …”
    Get full text
    Article
  19. 779

    A deep-learning approach to predict reproductive toxicity of chemicals using communicative message passing neural network by Owen He, Daoxing Chen, Yimei Li

    Published 2025-07-01
    “…In independent test sets, ReproTox-CMPNN achieved a mean AUC of 0.946, ACC of 0.857 and F1 score of 0.846, surpassing traditional algorithms to establish itself as a new state-of-the-art model in this field. …”
    Get full text
    Article
  20. 780

    Integrated analysis of single-cell RNA-seq and spatial transcriptomics to identify the lactylation-related protein TUBB2A as a potential biomarker for glioblastoma in cancer cells... by Yifan Xu, Chonghui Zhang, Jinpeng Wu, Pin Guo, Nan Jiang, Chao Wang, Yugong Feng

    Published 2025-06-01
    “…Notably, the expression levels of these three hub genes and the lactylation level of TUBB2A in GBM tissues were significantly higher compared to those in normal tissues.ConclusionsWe propose and validate a IQR lactylation screening method that provides potential insights for GBM therapy and an effective framework for developing gene screening models applicable to other diseases and pathogenic mechanisms.…”
    Get full text
    Article