-
1861
Enhancing Latent Defect Detection in Built-In Spindle Assembly Lines Through Vibration Data Analysis
Published 2025-01-01“…The integration of these advanced algorithms accurately identified defects and categorized them, thus optimizing manufacturing processes. …”
Get full text
Article -
1862
Smart CAR-T Nanosymbionts: archetypes and proto-models
Published 2025-08-01“…At the same time, artificial intelligence (AI), with its powerful algorithms for data analysis and predictive modeling, is transforming how we design, evaluate, and monitor advanced therapies, including the optimization of manufacturing processes. …”
Get full text
Article -
1863
Evaluation of Liver Fibrosis through Noninvasive Tests in Steatotic Liver Disease
Published 2024-11-01“…Further research is needed to refine these diagnostic tools and improve accessibility.…”
Get full text
Article -
1864
A New Support Vector Machine Based on Convolution Product
Published 2021-01-01“…., convolutional neural networks (CNNs)) are the two most famous algorithms in small and big data, respectively. Nonetheless, smaller datasets may be very important, costly, and not easy to obtain in a short time. …”
Get full text
Article -
1865
UAV-Based SAR-Imaging of Objects From Arbitrary Trajectories Using Weighted Backprojection
Published 2025-01-01“…Synthetic aperture radars (SARs) based on uncrewed aerial vehicles (UAVs) are advantageous in comparison to existing airborne systems. Apart from cost, their main advantage is the flexibility of their flight path. …”
Get full text
Article -
1866
Predicting hydrocarbon reservoir quality in deepwater sedimentary systems using sequential deep learning techniques
Published 2025-07-01“…Three sequential deep learning models—Recurrent Neural Network and Gated Recurrent Unit—were developed and optimized using the Adam algorithm. The Adam-LSTM model outperformed the others, achieving a Root Mean Square Error of 0.009 and a correlation coefficient (R2) of 0.9995, indicating excellent predictive performance. …”
Get full text
Article -
1867
InvMOE: MOEs Based Invariant Representation Learning for Fault Detection in Converter Stations
Published 2025-04-01“…To overcome these issues, we propose InvMOE, a novel fault detection algorithm with two core components: (1) invariant representation learning, which captures task-relevant features and mitigates background noise interference, and (2) multi-task training using a mixture of experts (MOE) framework to adaptively optimize feature learning across tasks and address label sparsity. …”
Get full text
Article -
1868
Predicting the Remaining Useful Life of an Aircraft Engine Using a Stacked Sparse Autoencoder with Multilayer Self-Learning
Published 2018-01-01“…Because they are key components of aircraft, improving the safety, reliability and economy of engines is crucial. …”
Get full text
Article -
1869
Normalised Diagnostic Contribution Index (NDCI) Integration to Multi Objective Sensor Optimisation Framework (MOSOF)—An Environmental Control System Case
Published 2025-04-01“…Building on previous work, the proposed approach leverages a multi-objective genetic algorithm to optimise key criteria, including performance, cost, reliability management, and compatibility. …”
Get full text
Article -
1870
YOLO11-ARAF: An Accurate and Lightweight Method for Apple Detection in Real-World Complex Orchard Environments
Published 2025-05-01“…In response to the insufficient recognition performance and poor generalization capacity of existing detection algorithms under unstructured orchard scenarios, we constructed a customized apple image dataset captured under varying illumination conditions and introduced an improved detection architecture, YOLO11-ARAF, derived from YOLO11. …”
Get full text
Article -
1871
CoNfasTT: A Configurable, Scalable, and Fast Dual Mode Logic-Based NTT Design
Published 2024-01-01“…Our implementation offers several potential optimizations, including a unique, fully-combinational, and low-cost modular reduction technique within the K-RED algorithm. …”
Get full text
Article -
1872
Large-scale S-box design and analysis of SPS structure
Published 2023-02-01“…A class of optimal linear transformation P over a finite field<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mrow> <mrow><mo>(</mo> <mrow> <msubsup> <mi>F</mi> <mn>2</mn> <mi>m</mi> </msubsup> </mrow> <mo>)</mo></mrow></mrow> <mn>4</mn> </msup> </mrow></math></inline-formula> was constructed based on cyclic shift and XOR operation.Using the idea of inverse proof of input-output relation of linear transformation for reference, a proof method was put forward that transformed the objective problem of optimal linear transformation into several theorems of progressive relation, which not only solved the proof of that kind of optimal linear transformation, but also was suitable for the proof of any linear transformation.By means of small-scale S-box and optimal cyclic shift-XOR linear transformation P, a large-scale S-box model with 2-round SPS structure was established, and a series of lightweight large-scale S-boxes with good cryptographic properties were designed.Only three kind of basic operations such as look-up table, cyclic shift and XOR were used in the proposed design scheme, which improved the linearity and difference uniformity of large-scale S-boxes.Theoretical proof and case analysis show that, compared with the existing large-scale S-box construction methods, the proposed large-scale S-box design scheme has lower computational cost and better cryptographic properties such as difference and linearity, which is suitable for the design of nonlinear permutation coding of lightweight cryptographic algorithms.…”
Get full text
Article -
1873
An End-to-End Solution for Large-Scale Multi-UAV Mission Path Planning
Published 2025-06-01“…Additionally, we integrate a Multi-Start Greedy Rollout Baseline to evaluate diverse trajectories via parallelized greedy searches, thereby reducing policy gradient variance and improving training stability. Experiments demonstrated significant improvements in scalability, particularly in 100-node scenarios, where our method drastically reduced inference time compared to conventional methods, while maintaining a competitive path cost efficiency. …”
Get full text
Article -
1874
Future of Alzheimer's detection: Advancing diagnostic accuracy through the integration of qEEG and artificial intelligence
Published 2025-08-01“…This review highlights the significant potential of AI-enhanced qEEG as a non-invasive, cost-effective tool for the diagnosis of AD in its prodromal and dementia stages, while also identifying areas requiring further research to optimize its clinical application. …”
Get full text
Article -
1875
Enhanced CLIP-GPT Framework for Cross-Lingual Remote Sensing Image Captioning
Published 2025-01-01“…Remote Sensing Image Captioning (RSIC) aims to generate precise and informative descriptive text for remote sensing images using computational algorithms. Traditional “encoder-decoder” approaches face limitations due to their high training costs and heavy reliance on large-scale annotated datasets, hindering their practical applications. …”
Get full text
Article -
1876
Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees
Published 2025-07-01“…Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs. Some machine learning algorithms and artificial intelligence models for defect detection, such as Convolutional Neural Networks (CNNs), present outstanding performance, but they are often data-dependent and cannot provide guarantees for new test samples. …”
Get full text
Article -
1877
Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor
Published 2017-01-01“…High-temperature gas-cooled reactors (HTGR) can incorporate wireless sensor network (WSN) technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs). …”
Get full text
Article -
1878
Automating the Design of Scalable and Efficient IoT Architectures Using Generative Adversarial Networks and Model-Based Engineering for Industry 4.0
Published 2025-01-01“…Traditional approaches, such as heuristic and genetic algorithms, have proven insufficient in automating and optimizing large-scale IoT configurations, resulting in a high design and validation time cost. …”
Get full text
Article -
1879
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
Published 2025-03-01“…Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods, including Stackelberg game models and model predictive control, achieving an 18.73% reduction in costs and a 22.46% increase in VPP profits. The MARL framework shows particular strength in scenarios with high renewable energy penetration, where it improves system performance by 11.95% compared with traditional methods. …”
Get full text
Article -
1880
Challenges of the Biopharmaceutical Industry in the Application of Prescriptive Maintenance in the Industry 4.0 Context: A Comprehensive Literature Review
Published 2024-11-01“…The results obtained revealed that prescriptive maintenance offers opportunities for improvement in the production process, such as cost reduction and greater proximity to all actors in the areas of production, maintenance, quality, and management. …”
Get full text
Article