Search alternatives:
coot » cost (Expand Search)
Showing 1,941 - 1,960 results of 2,044 for search '(improved OR improve) (((coot OR post) OR root) OR most) optimization algorithm', query time: 0.22s Refine Results
  1. 1941

    Deep Learning in Defect Detection of Wind Turbine Blades: A Review by Katleho Masita, Ali N. Hasan, Thokozani Shongwe, Hasan Abu Hilal

    Published 2025-01-01
    “…The increasing adoption of wind turbines as a key component of renewable energy generation necessitates the development of efficient and reliable maintenance strategies to ensure their optimal performance and safety. Among the most critical aspects of turbine maintenance is detecting and classifying defects in wind turbine blades, which are constantly exposed to extreme environmental conditions. …”
    Get full text
    Article
  2. 1942

    Semantic Segmentation with Multispectral Satellite Images of Waterfowl Habitat by Mateo Gannod, Nicholas Masto, Collins Owusu, Cory Highway, Katherine Brown, Abigail Blake-Bradshaw, Jamie Feddersen, Heath Hagy, Douglas Talbert, Bradley Cohen

    Published 2023-05-01
    “…We found the use of multispectral bands was necessary and although the CIR composite and OSAVI index improved precision, the 12-band composite increased recall, the metric we were most interested in. …”
    Get full text
    Article
  3. 1943

    Ultrasound combined with serological markers for predicting neonatal necrotizing enterocolitis: a machine learning approach by Yi Yang, Shoulan Zhou, Xiaomin Liu, Yanhong Zhang, Liping Lin, Chenhan Zheng, Xiaohong Zhong

    Published 2025-07-01
    “…SHAP analysis identified bowel peristalsis, C-reactive protein, albumin, bowel thickness, and procalcitonin as the most influential predictors. Decision curve analysis demonstrated a positive relative net benefit of the USPN model compared to the US and serological models in the validation set.ConclusionA machine learning model integrating ultrasound and serological markers significantly improves the prediction of NEC in neonates compared to single-modality approaches. …”
    Get full text
    Article
  4. 1944

    Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang, Guoteng Ren

    Published 2025-07-01
    “…In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. …”
    Get full text
    Article
  5. 1945

    IoT Based Health Monitoring with Diet, Exercise and Calories recommendation Using Machine Learning by Muhammad Hassaan Naveed, Omar Bin Samin, Muhammad Bilal, Mustehsum Waseem

    Published 2025-04-01
    “…This research not only enhances automation and efficiency in fitness management but also introduces an affordable technological solution to improve health monitoring in hospitals.…”
    Get full text
    Article
  6. 1946

    Robust EEG Characteristics for Predicting Neurological Recovery from Coma After Cardiac Arrest by Meitong Zhu, Meng Xu, Meng Gao, Rui Yu, Guangyu Bin

    Published 2025-04-01
    “…Significance: Our research identifies key electroencephalographic (EEG) biomarkers, including low-frequency connectivity and burst suppression thresholds, to improve early and objective prognosis assessments. …”
    Get full text
    Article
  7. 1947

    Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study by Emanuele Frassini, Teddy S. Vijfvinkel, Rick M. Butler, Maarten van der Elst, Benno H. W. Hendriks, John J. van den Dobbelsteen

    Published 2025-12-01
    “…We employed only the clinical phases derived from video analysis as input to the algorithms. Our results show that InceptionTime and LSTM-FCN yielded the most accurate predictions. …”
    Get full text
    Article
  8. 1948

    Machine learning-based integration develops relapse related signature for predicting prognosis and indicating immune microenvironment infiltration in breast cancer by Junyi Li, Shixin Li, Dongpo Zhang, Yibing Zhu, Yue Wang, Xiaoxiao Xing, Juefei Mo, Yong Zhang, Daixiang Liao, Jun Li

    Published 2025-06-01
    “…To address these limitations, this study systematically analyzed RNA-seq high-throughput data and combined 10 machine learning algorithms to construct 117 models. The optimal algorithm combination, StepCox[both] and ridge regression, was identified, and an immune-related gene signature (IRGS) composed of 12 genes was developed. …”
    Get full text
    Article
  9. 1949

    A deep contrastive learning-based image retrieval system for automatic detection of infectious cattle diseases by Veerayuth Kittichai, Morakot Kaewthamasorn, Apinya Arnuphaprasert, Rangsan Jomtarak, Kaung Myat Naing, Teerawat Tongloy, Santhad Chuwongin, Siridech Boonsang

    Published 2025-01-01
    “…Abstract Anaplasmosis, which is caused by Anaplasma spp. and transmitted by tick bites, is one of the most serious livestock animal diseases worldwide, causing significant economic losses as well as public health issues. …”
    Get full text
    Article
  10. 1950
  11. 1951

    Factors influencing the effectiveness of SM-VCE method in solving 3D surface deformation by Xupeng Liu, Guangyu Xu, Mingkai Chen, Tengxu Zhang

    Published 2025-01-01
    “…The latter type applies to earthquakes that do not cause surface ruptures and have extensive blind faults. Currently, most research focuses on improving the above types of methods. …”
    Get full text
    Article
  12. 1952

    Integrated Ultrasound‐Enrichment and Machine Learning in Colorimetric Lateral Flow Assay for Accurate and Sensitive Clinical Alzheimer's Biomarker Diagnosis by Shuqing Wang, Yan Zhu, Zhongzeng Zhou, Yong Luo, Yan Huang, Yibiao Liu, Tailin Xu

    Published 2024-11-01
    “…The LFA device is integrated with a portable ultrasonic actuator to rapidly enrich microparticles using ultrasound, which is essential for sample pre‐enrichment to improve the sensitivity, followed by ML algorithms to classify and predict the enhanced colorimetric signals. …”
    Get full text
    Article
  13. 1953

    PENC: a predictive-estimative nonlinear control framework for robust target tracking of fixed-wing UAVs in complex urban environments by Shiji Hai, Xitai Na, Zhihui Feng, Jinshuo Shi, Qingbin Sun

    Published 2025-08-01
    “…This necessitates tracking algorithms capable of both target state estimation and prediction. …”
    Get full text
    Article
  14. 1954

    Artificial Intelligence-Based Prediction of Bloodstream Infections Using Standard Hematological and Biochemical Markers by Ferhat DEMİRCİ, Murat AKŞİT, Aylin DEMİRCİ

    Published 2025-08-01
    “…The model’s strong performance and interpretability suggest its potential application in clinical decision support systems to improve diagnostic stewardship, reduce unnecessary cultures, and optimize resource use in suspected BSI cases.…”
    Get full text
    Article
  15. 1955

    Innovative approach for gauge-based QPE in arid climates: comparing neural networks and traditional methods by Bayan Banimfreg, Ernesto Damiani, Vesta Afzali Gorooh, Duncan Axisa, Luca Delle Monache, Youssef Wehbe

    Published 2025-07-01
    “…The superior performance of the neural network approach suggests significant potential for improving water resource management practices, optimizing cloud seeding interventions, and informing policy decisions. …”
    Get full text
    Article
  16. 1956

    Machine vision-based detection of key traits in shiitake mushroom caps by Jiuxiao Zhao, Jiuxiao Zhao, Wengang Zheng, Wengang Zheng, Yibo Wei, Yibo Wei, Qian Zhao, Qian Zhao, Jing Dong, Jing Dong, Xin Zhang, Xin Zhang, Mingfei Wang, Mingfei Wang

    Published 2025-02-01
    “…Finally,M3 group using GWO_SVM algorithm achieved optimal performance among six mainstream machine learning models tested with an R²value of 0.97 and RMSE only at 0.038 when comparing predicted values with true values. …”
    Get full text
    Article
  17. 1957

    Medical Device Failure Predictions Through AI-Driven Analysis of Multimodal Maintenance Records by Noorul Husna Abd Rahman, Khairunnisa Hasikin, Nasrul Anuar Abd Razak, Ayman Khallel Al-Ani, D. Jerline Sheebha Anni, Prabu Mohandas

    Published 2023-01-01
    “…Based on the performance evaluation, the Ensemble Classifier is further optimized and demonstrates improved accuracy of 88.80%, specificity of 94.41%, recall of 88.82%, precision of 88.46%, and F1 Score of 88.84%. …”
    Get full text
    Article
  18. 1958

    Cross-sectional and longitudinal Biomarker extraction and analysis for multicentre FLAIR brain MRI by J. DiGregorio, A. Gibicar, H. Khosravani, P. Jabehdar Maralani, J.-C. Tardif, P.N. Tyrrell, A.R. Moody, A. Khademi

    Published 2022-06-01
    “…Despite this, most automated biomarker extraction algorithms are designed for T1-weighted or multi-modal inputs. …”
    Get full text
    Article
  19. 1959

    A comprehensive review of data analytics and storage methods in geothermal energy operations by Ali Basem, Ahmed Kateb Jumaah Al-Nussairi, Dana Mohammad Khidhir, Narinderjit Singh Sawaran Singh, Mohammadreza Baghoolizadeh, Mohammad Ali Fazilati, Soheil Salahshour, S. Mohammad Sajadi, Ali Mohammadi Hasanabad

    Published 2025-09-01
    “…The study also delves into the potential of machine learning to optimize geothermal design, monitor performance, improve performance, find errors, and more. …”
    Get full text
    Article
  20. 1960

    The potential role of next-generation sequencing in identifying MET amplification and disclosing resistance mechanisms in NSCLC patients with osimertinib resistance by Xiao Xiao, Xiao Xiao, Ren Xu, Ren Xu, Jun Lu, Beibei Xin, Chenyang Wang, Kexin Zhu, Hao Zhang, Xinyu Chen

    Published 2024-10-01
    “…With FISH results as gold standard, enumeration algorithm was applied to establish the optimal model for identifying MET amplification using gene copy number (GCN) data.ResultsThe optimal model for identifying MET amplification was constructed based on the GCN of MET, BRAF, CDK6 and CYP3A4, which achieved a 74.0% overall agreement with FISH and performed well in identifying MET amplification except polysomy with a sensitivity of 85.7% and a specificity of 93.9%. …”
    Get full text
    Article