Search alternatives:
fast » east (Expand Search)
Showing 41 - 60 results of 83 for search '(fast OR fact) research random three algorithm', query time: 0.20s Refine Results
  1. 41
  2. 42
  3. 43
  4. 44
  5. 45

    Forest canopy closure estimation in mountainous southwest China using multi-source remote sensing data by Wenwu Zhou, Wenwu Zhou, Qingtai Shu, Cuifen Xia, Li Xu, Qin Xiang, Lianjin Fu, Zhengdao Yang, Shuwei Wang

    Published 2025-08-01
    “…Then, the multi-source remote sensing image Sentinel-1/2 and terrain factors were combined to perform regional-scale FCC remote sensing estimation based on the geographically weighted regression (GWR) model. The research results showed that (1) among the 50 extracted ATLAS LiDAR feature indices, the best footprint-scale modeling factors are Landsat_perc, h_dif_canopy, asr, h_min_canopy, toc_roughness, and n_touc_photons after random forest (RF) feature variable optimization; (2) among the BO-RFR, BO-KNN, and BO-GBRT models developed at the footprint scale, the FCC results estimated by the BO-GBRT model were the best (R2 = 0.65, RMSE = 0.10, RS = 0.079, and P = 79.2%), which was used as the FCC estimation model for 74,808 footprints in the study area; (3) taking the FCC value of ATLAS footprint scale in forest land as the training sample data of the regional-scale GWR model, the model accuracy was R2 = 0.70, RMSE = 0.06, and P = 88.27%; and (4) the R² between the FCC estimates from regional-scale remote sensing and the measured values is 0.70, with a correlation coefficient of 0.784, indicating strong agreement. …”
    Get full text
    Article
  6. 46
  7. 47

    An artificial intelligence approach to palaeogeographic studies: a case study of the Late Ordovician brachiopods of Laurentia by Akbar Sohrabi

    Published 2025-06-01
    “…Based on the training algorithm and after 146 periods, the training error decreased, but the validation error increased (Fig. 7). …”
    Get full text
    Article
  8. 48

    The coverage method of unmanned aerial vehicle mounted base station sensor network based on relative distance by Taifei Zhao, Hua Wang, Qianwen Ma

    Published 2020-05-01
    “…The simulation results show that the coverage of the proposed algorithm is 22.4% higher than that of random deployment, and it is 9.9%, 4.7% and 2.1% higher than similar virtual force-oriented node, circular binary segmentation and hybrid local virtual force algorithms.…”
    Get full text
    Article
  9. 49
  10. 50

    Enhancing Software Defect Prediction Using Ensemble Techniques and Diverse Machine Learning Paradigms by Ayesha Siddika, Momotaz Begum, Fahmid Al Farid, Jia Uddin, Hezerul Abdul Karim

    Published 2025-07-01
    “…The prediction of software defects is a crucial element in maintaining the stability and reliability of software systems. This research addresses this need by combining advanced techniques (ensemble techniques) with seventeen machine learning algorithms for predicting software defects, categorised into three types: semi-supervised, self-supervised, and supervised. …”
    Get full text
    Article
  11. 51

    Improving Attack Detection in IoV with Class Balancing and Feature Selection by Thierry Widyatama, Ifan Rizqa, Fauzi Adi Rafrastara

    Published 2025-03-01
    “…The ensemble algorithms evaluated in this research comprise Random Forest, Gradient Boosting, and XGBoost. …”
    Get full text
    Article
  12. 52

    Prediction of Anemia from Multi-Data Attribute Co-Existence by Talal Qadah, Asmaa Munshi

    Published 2024-01-01
    “…Therefore, this study has reevaluated the claims within the domain of detecting and predicting anemia with the best machine learning algorithm. Another research problem, lies with the fact that previous studies on anemia prediction utilized limited machine learning algorithms across a narrow range of datasets, whereas this current study employed numerous machine learning algorithms across a wide range of anemia datasets and tested three hypotheses. …”
    Get full text
    Article
  13. 53
  14. 54
  15. 55

    Combined L-Band Polarimetric SAR and GPR Data to Develop Models for Leak Detection in the Water Pipeline Networks by Yuyao Zhang, Hongliang Guan, Fuzhou Duan

    Published 2025-04-01
    “…The model features are selected with the Boruta wrapper algorithm based on the SAOCOM-1A images after pre-processing, and the SSRDC values at sampling locations within the research area are calculated with the reflected wave method based on the GPR data. …”
    Get full text
    Article
  16. 56
  17. 57
  18. 58
  19. 59
  20. 60