Showing 141 - 160 results of 1,420 for search '((more OR made) OR model) screening algorithm', query time: 0.18s Refine Results
  1. 141
  2. 142

    Unlocking The Potential of Hybrid Models for Prognostic Biomarker Discovery in Oral Cancer Survival Analysis: A Retrospective Cohort Study by Leila Nezamabadi Farahani, Anoshirvan Kazemnejad, Mahlagha Afrasiabi, Leili Tapak

    Published 2024-12-01
    “…Concordance index (C-index), mean absolute error (MAE), mean squared error (MSE) and R-squares, were used to evaluate the performance of the models using selected features. Functional enrichment analysis was performed using DAVID database, and external validation utilized three independent datasets (GSE9844, GSE75538, GSE37991, GSE42743).Results: The findings indicated that the PSO-based method outperformed the GA-based method, achieving a smaller MAE (0.061) and MSE (0.005), R-square (0.99) and C-index (0.973), selecting 291 probes from 1069 screened. …”
    Get full text
    Article
  3. 143
  4. 144
  5. 145

    New Approaches to AI Methods for Screening Cardiomegaly on Chest Radiographs by Patrycja S. Matusik, Zbisław Tabor, Iwona Kucybała, Jarosław D. Jarczewski, Tadeusz J. Popiela

    Published 2024-12-01
    “…However, McNemar tests have shown that diagnoses made with TCD, rather than CTR, were more consistent with CMR diagnoses. …”
    Get full text
    Article
  6. 146
  7. 147

    Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets by Kuoyuan Cheng, Laura Martin‐Sancho, Lipika R Pal, Yuan Pu, Laura Riva, Xin Yin, Sanju Sinha, Nishanth Ulhas Nair, Sumit K Chanda, Eytan Ruppin

    Published 2021-10-01
    “…Abstract Tremendous progress has been made to control the COVID‐19 pandemic caused by the SARS‐CoV‐2 virus. …”
    Get full text
    Article
  8. 148

    An Emotion-Driven Vocal Biomarker-Based PTSD Screening Tool by Thomas F. Quatieri, Jing Wang, James R. Williamson, Richard DeLaura, Tanya Talkar, Nancy P. Solomon, Stefanie E. Kuchinsky, Megan Eitel, Tracey Brickell, Sara Lippa, Kristin J. Heaton, Douglas S. Brungart, Louis French, Rael Lange, Jeffrey Palmer, Hayley Reynolds

    Published 2024-01-01
    “…<italic>Results:</italic> Speech from low-arousal and positive-valence regions provide the highest discrimination for PTSD. Our model achieved an AUC (area under the curve) of 0.80 in detecting PCL-C ratings, outperforming models with no emotion filtering (AUC &#x003D; 0.68). …”
    Get full text
    Article
  9. 149
  10. 150
  11. 151

    Construction of a predictive model for cognitive impairment among older adults in Northwest China by Yu Wang, Ni Wang, Yanjie Zhao, Xiaoyan Wang, Yuqin Nie, Liping Ding

    Published 2025-07-01
    “…Model performance was evaluated on the basis of the area under the curve, sensitivity, specificity, accuracy, F1 score, precision, and recall.ResultsA total of 12,332 older adults were recruited and screened with the Mini-Mental State Examination Scale. …”
    Get full text
    Article
  12. 152

    ALGEBRAIC MODELS OF STRIP LINES IN A MULTILAYER DIELECTRIC MEDIUM by A. N. Kovalenko, A. N. Zhukov

    Published 2018-06-01
    “…The use of the Chebyshev basis and the improvement of the series convergence made it possible to develop an effective algorithm for calculating the basic electrodynamic parameters of the strip lines - the propagation constants and the wave impedances of the natural waves. …”
    Get full text
    Article
  13. 153
  14. 154

    Research Progress in the Screening of Antimicrobial Substances Based on Machine Learning by HOU Jiangxia, JIANG Jinhui, WANG Chenxin, WANG Lan, SHI Liu, WU Wenjin, GUO Xiaojia, CHEN Sheng, CHEN Lang, CAO Feng, SUN Li, ZHOU Zhi

    Published 2025-07-01
    “…As a branch of artificial intelligence, machine learning algorithms have demonstrated exceptional capabilities in processing large-scale data, feature extraction, and model optimization, leading to their increasing application in the screening of antimicrobial substances. …”
    Get full text
    Article
  15. 155

    Screening for nasopharyngeal carcinoma in high-incidence regions——Next steps by Allan Hildesheim

    Published 2024-09-01
    “…Future efforts should focus on implementing screening programs in high-incidence populations, assessing and refining screening algorithms, and exploring new, potentially more cost-effective screening methods. …”
    Get full text
    Article
  16. 156
  17. 157

    Explainable Artificial Intelligence Driven Segmentation for Cervical Cancer Screening by Niruthikka Sritharan, Nishaanthini Gnanavel, Prathushan Inparaj, Dulani Meedeniya, Pratheepan Yogarajah

    Published 2025-01-01
    “…This represents a pioneering application of explainability techniques in the context of cervical cancer screening. Among the classification models explored, including fine-tuned variants of VGGNet and XceptionNet, VGG16-Adapted128 achieved the highest performance, marked by an accuracy of 0.94, precision of 0.94, recall of 0.94, and an F1 score of 0.94. …”
    Get full text
    Article
  18. 158

    A study on predicting the risk of coronary artery disease in OSAHS patients based on a four-variable screening tool potential predictive model and its correlation with the severity... by Yanli Yao, Yu Li, Yulan Chen, Xuan Qiu, Gulimire Aimaiti, Ayiguzaili Maimaitimin

    Published 2025-06-01
    “…ObjectiveThis study aims to evaluate the potential association between the four-variable screening tool (the 4 V) potential predictive model in predicting coronary artery disease (CAD) risk in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) and its correlation with the severity of coronary atherosclerosis, as measured by the Gensini scoring system.Methods1197 OSAHS patients with suspected CAD who were hospitalized in the First Affiliated Hospital of Xinjiang Medical University between March 2020 and February 2024 were selected. …”
    Get full text
    Article
  19. 159

    All-Cause Mortality Risk in Elderly Patients with Femoral Neck and Intertrochanteric Fractures: A Predictive Model Based on Machine Learning by Min A, Liu Y, Fu M, Hou Z, Wang Z

    Published 2025-05-01
    “…Cox proportional hazards regression is used to explore the association between fractures type and mortality. Boruta algorithm was used to screen the risk factors related to death. …”
    Get full text
    Article
  20. 160

    Development of machine learning models to predict the risk of fungal infection following flexible ureteroscopy lithotripsy by Haofang Zhang, Changbao Xu, Chenge Hu, Yunlai Xue, Daoke Yao, Yifan Hu, Ankang Wu, Miao Dai, Hang Ye

    Published 2025-04-01
    “…Our study aimed to construct a machine learning algorithm predictive model to predict the risk of fungal infection following F-URL. …”
    Get full text
    Article