Showing 1,381 - 1,400 results of 1,420 for search '((model OR more) OR made) screening algorithm', query time: 0.21s Refine Results
  1. 1381

    Comparative assessment of line probe assays and targeted next-generation sequencing in drug-resistant tuberculosis diagnosisResearch in context by Giovanna Carpi, Marva Seifert, Andres De la Rossa, Swapna Uplekar, Camilla Rodrigues, Nestani Tukvadze, Shaheed V. Omar, Anita Suresh, Timothy C. Rodwell, Rebecca E. Colman

    Published 2025-09-01
    “…Interpretation: LPAs demonstrated lower sensitivity and more limited drug resistance detection compared to tNGS workflows, underscoring the advantages of tNGS for improving DR-TB diagnostic algorithms. …”
    Get full text
    Article
  2. 1382

    Development of an immune-related gene signature applying Ridge method for improving immunotherapy responses and clinical outcomes in lung adenocarcinoma by Zhen Chen, Yongjun Zhang

    Published 2025-05-01
    “…Considering the critical role of tumor infiltrating lymphocytes in effective immunotherapy, this study was designed to screen molecular markers related to tumor infiltrating cells in LUAD, aiming to improve immunotherapy response during LUAD therapy. …”
    Get full text
    Article
  3. 1383

    Mesangial cell-derived CircRNAs in chronic glomerulonephritis: RNA sequencing and bioinformatics analysis by Ji Hui Fan, Xiao Min Li

    Published 2024-12-01
    “…Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. …”
    Get full text
    Article
  4. 1384

    A novel nomogram for survival prediction in renal cell carcinoma patients with brain metastases: an analysis of the SEER database by Fei Wang, Xihao Wang, Zhigang Feng, Jun Li, Hailiang Xu, Hengming Lu, Lianqu Wang, Zhihui Li

    Published 2025-06-01
    “…Potential risk factors were initially screened applying the eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) machine learning algorithms. …”
    Get full text
    Article
  5. 1385

    Deciphering mitochondrial dysfunction in keratoconus: Insights into ACSL4 from machine learning-based bulk and single-cell transcriptome analyses and experimental validation by Yuchen Cai, Tianyi Zhou, Xueyao Cai, Wenjun Shi, Hao Sun, Yao Fu

    Published 2025-01-01
    “…Hub genes were further screened and validated by multiple machine learning (ML) algorithms, followed by a comprehensive visualization of single-cell atlas and immune landscape. …”
    Get full text
    Article
  6. 1386

    Identification and mechanism analysis of biomarkers related to butyrate metabolism in COVID-19 patients by Wenchao Zhou, Hui Li, Juan Zhang, Changsheng Liu, Dan Liu, Xupeng Chen, Jing Ouyang, Tian Zeng, Shuang Peng, Fan Ouyang, Yunzhu Long, Yukun Li

    Published 2025-12-01
    “…Six machine learning algorithms were employed to determine the best model for identifying biomarkers, and receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic value of the biomarkers in COVID-19. …”
    Get full text
    Article
  7. 1387

    Exploring Mechanisms of Lang Qing Ata in Non-Alcoholic Steatohepatitis Based on Metabolomics, Network Pharmacological Analysis, and Experimental Validation by Li S, Zhu H, Zhai Q, Hou Y, Yang Y, Lan H, Jiang M, Xuan J

    Published 2025-03-01
    “…These discoveries were further validated in subsequent mouse models. An HFHC-induced NASH mouse model was used to validate the therapeutic effects and potential mechanisms of LQAtta on NASH.Results: From the UHPLC-MS/MS analysis of LQAtta, a total of 1518 chemical components were identified, with 106 of them being absorbed into the bloodstream. …”
    Get full text
    Article
  8. 1388

    Microarray profile of circular RNAs identifies CBT15_circR_28491 and T helper cells as new regulators for deep vein thrombosis by Weiwei Chen, Ying Zhu, Sihua Niu, Yan Zhou, Jian Chang, Shujie Gan

    Published 2025-06-01
    “…Finally, a DVT rat model was established to verify the expression of critical circRNAs and hub genes using real-time quantitative PCR.ResultsA total of 421 circRNAs and 1,082 mRNAs were differentially expressed in DVT. …”
    Get full text
    Article
  9. 1389

    La Inteligencia Artificial en la educación: Big data, cajas negras y solucionismo tecnológico / Artificial Intelligence in Education: Big Data, Black Boxes, and Technological Solut... by Xavier Giró-Gracia, Juana María Sancho-Gil

    Published 2022-01-01
    “…Educators, educational researchers, and policymakers, in general, lack the knowledge and expertise to understand the underlying logic of these new systems, and there is insufficient research based evidence to fully understand the consequences for learners’ development of both the extensive use of screens and the increasing reliance on algorithms in educational settings. …”
    Get full text
    Article
  10. 1390

    A network toxicology and machine learning approach to investigate the mechanism of kidney injury from melamine and cyanuric acid co-exposure by Zhan Wang, Zhaokai Zhou, Zihao Zhao, Junjie Zhang, Shengli Zhang, Luping Li, Yingzhong Fan, Qi Li

    Published 2025-03-01
    “…Potential target proteins were identified using ChEMBL, STITCH, and GeneCards databases, and hub genes were screened using three machine learning algorithms: LASSO regression, Random Forest, and Molecular Complex Detection. …”
    Get full text
    Article
  11. 1391
  12. 1392

    Application of hyperthermia robots in Cyber-syndrome treatment by Xueyan YIN, Feifei SHI, Jinqiang WANG, Huansheng NING

    Published 2025-04-01
    “…Traditional technologies are now integrated with artificial intelligence techniques, such as big data analysis and visualization algorithms, enabling more precise and personalized treatment services that effectively alleviate the symptoms of Cyber-syndrome. …”
    Get full text
    Article
  13. 1393

    Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques by Liuqing Yang, Liuqing Yang, Liuqing Yang, Rui Xuan, Rui Xuan, Rui Xuan, Dawei Xu, Dawei Xu, Dawei Xu, Aming Sang, Aming Sang, Aming Sang, Jing Zhang, Jing Zhang, Jing Zhang, Yanfang Zhang, Xujun Ye, Xinyi Li, Xinyi Li, Xinyi Li

    Published 2025-03-01
    “…The utilization of the receiver operating characteristic curve in conjunction with the nomogram model served to authenticate the discriminatory strength and efficacy of the key genes. …”
    Get full text
    Article
  14. 1394

    Aplicación del análisis de rango reescalado R/S para la predicción de genes en el genoma vegetal Rescaled range R/S analysis application for genes prediction in the plant genome by Martha Isabel Almanza Pinzón, Karina López López, Carlos Eduardo Téllez Villa

    Published 2010-10-01
    “…Python programming language algorithms were developed with the purpose of extract, screen and modeling more than 80% of the registered gene sequences for these genomes in the NCBI Gene Bank data base. …”
    Get full text
    Article
  15. 1395

    Identification of biomarkers associated with inflammatory response in Parkinson's disease by bioinformatics and machine learning. by Yatan Li, Wei Jia, Chen Chen, Cheng Chen, Jinchao Chen, Xinling Yang, Pei Liu

    Published 2025-01-01
    “…LASSO, SVM-RFE and Random Forest algorithms were used to screen biomarker genes. Then, ROC curves were drawn and PD risk predicting models were constructed on the basis of the biomarker genes. …”
    Get full text
    Article
  16. 1396

    Identifying potential three key targets gene for septic shock in children using bioinformatics and machine learning methods by Wei Guo, Hao Chen, Feng Wang, Yingjiao Chi, Wei Zhang, Shan Wang, Kezhu Chen, Hong Chen

    Published 2025-06-01
    “…Three kinds of machine learning models were established, and the candidate genes were screened by intersection to obtain the core genes with diagnostic value. …”
    Get full text
    Article
  17. 1397

    Crop yield prediction using machine learning: An extensive and systematic literature review by Sarowar Morshed Shawon, Falguny Barua Ema, Asura Khanom Mahi, Fahima Lokman Niha, H.T. Zubair

    Published 2025-03-01
    “…Also, the most applied machine learning algorithms are Linear Regression (LR), Random Forest (RF), and Gradient Boosting Trees (GBT) whereas the most applied deep learning algorithms are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM). …”
    Get full text
    Article
  18. 1398

    Optimization of Coulomb energies in gigantic configurational spaces of multi-element ionic crystals by Konstantin Köster, Tobias Binninger, Payam Kaghazchi

    Published 2025-07-01
    “…Coulomb energies of possible configurations generally show a satisfactory correlation to computed energies at higher levels of theory and thus allow to screen for minimum-energy structures. Employing an expansion into a binary optimization problem, we obtain an efficient Coulomb energy optimizer using Monte Carlo and Genetic Algorithms. …”
    Get full text
    Article
  19. 1399

    Machine learning approaches reveal methylation signatures associated with pediatric acute myeloid leukemia recurrence by Yushuang Dong, HuiPing Liao, Feiming Huang, YuSheng Bao, Wei Guo, Zhen Tan

    Published 2025-05-01
    “…DNA methylation data from 696 newly diagnosed and 194 relapsed pediatric AML patients were analyzed. Feature selection algorithms, including Boruta, least absolute shrinkage and selection operator, light gradient boosting machine, and Monte Carlo feature selection, were employed to screen and rank methylation sites strongly correlated with AML recurrence. …”
    Get full text
    Article
  20. 1400

    Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis by Chuang Yang, Yi-Hang Liu, Hai-Kuo Zheng

    Published 2024-10-01
    “…This study used metabolomics, machine learning algorithms and bioinformatics to screen for potential metabolic biomarkers associated with the diagnosis of PAH. …”
    Get full text
    Article