Search alternatives:
madel » made (Expand Search)
Showing 481 - 500 results of 1,398 for search '((model OR madel) OR more) screening algorithm', query time: 0.21s Refine Results
  1. 481
  2. 482

    Examining the empathy levels of medical students using CHAID analysis by Nesrin Hark Söylemez

    Published 2025-05-01
    “…Methods The study was conducted with 322 medical students from a public university in Turkey. A relational screening model was applied, using a “Personal Information Form” and an “Empathy Scale” to gather data. …”
    Get full text
    Article
  3. 483

    Development of a Predictive Model for N-Dealkylation of Amine Contaminants Based on Machine Learning Methods by Shiyang Cheng, Qihang Zhang, Hao Min, Wenhui Jiang, Jueting Liu, Chunsheng Liu, Zehua Wang

    Published 2024-12-01
    “…Therefore, the classification model developed in this work can provide methodological support for the high-throughput screening of N-dealkylation of amine pollutants.…”
    Get full text
    Article
  4. 484

    Construction of Diagnostic Model for Regulatory T Cell-Related Genes in Sepsis Based on Machine Learning by Xuesong Wang, Zhe Guo, Xinrui Wang, Zhong Wang

    Published 2025-04-01
    “…Thus, we utilized multiple machine learning algorithms to screen and extract Treg-related genes associated with sepsis diagnosis. …”
    Get full text
    Article
  5. 485

    Integrated bioinformatics analysis to develop diagnostic models for malignant transformation of chronic proliferative diseases by Hua Liu, Sheng Lin, Pei-Xuan Chen, Juan Min, Xia-Yang Liu, Ting Guan, Chao-Ying Yang, Xiao-Juan Xiao, De-Hui Xiong, Sheng-Jie Sun, Ling Nie, Han Gong, Xu-Sheng Wu, Xiao-Feng He, Jing Liu

    Published 2025-06-01
    “…Integrated public datasets of PV and AML were analyzed to identify differentially expressed genes (DEGs) and construct a weighted correlation network. Machine-learning algorithms screen genes for potential biomarkers, leading to the development of diagnostic models. …”
    Get full text
    Article
  6. 486

    CSCA-YOLOv8: A lightweight network model for evaluating drought resistance in mung bean. by Dongshan Jiang, Jinyang Liu, Haomiao Zhang, Wenxiang Liang, Ziqiu Luo, Wenlong An, Shicong Li, Xin Chen, Xingxing Yuan, Shangbing Gao

    Published 2025-01-01
    “…We also verified the excellent performance and generalization performance of the model using the collected MDD dataset. The final experimental results show that compared with the YOLOv8s baseline model, the number of parameters of our proposed algorithm is reduced by 24%, the floating point number is reduced by 35%, and the accuracy is improved by 2.52%, which supports the deployment on embedded edge devices with limited computing power. …”
    Get full text
    Article
  7. 487

    Early Warning of Low-Frequency Oscillations in Power System Using Rough Set and Cloud Model by Miao Yu, Jinyang Han, Shuoshuo Tian, Jianqun Sun, Honghao Wu, Jiaxin Yan

    Published 2025-01-01
    “…Compared with the existing methods, we have pioneered a synergistic mechanism of discrete attribute screening and continuous probabilistic feature fusion by combining the dynamic attribute approximation algorithm of rough sets with the cloud model, which effectively solves the loss of information caused by the discretization of continuous data in the traditional methods. …”
    Get full text
    Article
  8. 488

    Modeling of biodiesel production using optimization designs from literature: aiming to reduce the laboratory workload by Iver Bergh Hvidsten, Kristian Hovde Liland, Oliver Tomic, Jorge Mario Marchetti

    Published 2025-10-01
    “…GBR, with 1000 estimators and a tree depth of 5, achieved the best performance (R2 = 0.744, RMSE = 10.783). The global GBR model was comprehensively evaluated for accuracy and physical relevance, with proposed applications in component screening and reaction optimization using the DIRECT-l (DIviding RECTangles - locally biased version) algorithm. …”
    Get full text
    Article
  9. 489

    A multi-gene predictive model for the radiation sensitivity of nasopharyngeal carcinoma based on machine learning by Kailai Li, Junyi Liang, Nan Li, Jianbo Fang, Xinyi Zhou, Jian Zhang, Anqi Lin, Peng Luo, Hui Meng

    Published 2025-06-01
    “…By evaluating 113 machine learning algorithm combinations, the glmBoost+NaiveBayes model was selected to construct the NPC-RSS based on 18 key genes, which demonstrated good predictive performance in both public and in-house datasets. …”
    Get full text
    Article
  10. 490

    Ultrasound-based machine learning model to predict the risk of endometrial cancer among postmenopausal women by Yi-Xin Li, Yu Lu, Zhe-Ming Song, Yu-Ting Shen, Wen Lu, Min Ren

    Published 2025-07-01
    “…Radiomics features were extracted using Pyradiomics, and deep learning features were derived from convolutional neural network (CNN). Three models were developed: (1) R model: radiomics-based machine learning (ML) algorithms; (2) CNN model: image-based CNN algorithms; (3) DLR model: a hybrid model combining radiomics and deep learning features with ML algorithms. …”
    Get full text
    Article
  11. 491

    Exploring shared pathogenic mechanisms and biomarkers in hepatic fibrosis and inflammatory bowel disease through bioinformatics and machine learning by Shangkun Li, Haoyu Li, Mingran Qi

    Published 2025-05-01
    “…The key diagnostic biomarkers were determined via a protein-protein interaction (PPI) network combined with two machine learning algorithms. The logistic regression model was subsequently developed based on these key genes. …”
    Get full text
    Article
  12. 492
  13. 493

    TAL-SRX: an intelligent typing evaluation method for KASP primers based on multi-model fusion by Xiaojing Chen, Xiaojing Chen, Jingchao Fan, Jingchao Fan, Shen Yan, Longyu Huang, Longyu Huang, Longyu Huang, Guomin Zhou, Guomin Zhou, Jianhua Zhang, Jianhua Zhang

    Published 2025-02-01
    “…To address the above problems, we proposed a typing evaluation method for KASP primers by integrating deep learning and traditional machine learning algorithms, called TAL-SRX. First, three algorithms are used to optimize the performance of each model in the Stacking framework respectively, and five-fold cross-validation is used to enhance stability. …”
    Get full text
    Article
  14. 494

    An mRNA Vaccine for Herpes Zoster and Its Efficacy Evaluation in Naïve/Primed Murine Models by Linglei Jiang, Wenshuo Zhou, Fei Liu, Wenhui Li, Yan Xu, Zhenwei Liang, Man Cao, Li Hou, Pengxuan Liu, Feifei Wu, Aijun Shen, Zhiyuan Zhang, Xiaodi Zhang, Haibo Zhao, Xinping Pan, Tengjie Wu, William Jia, Yuntao Zhang

    Published 2025-03-01
    “…<b>Methods:</b> Various mRNA constructs were designed based on intracellular organelle-targeting strategies and AI algorithm-guided high-throughput automation platform screening and were then synthesized by in vitro transcription and encapsulated with four-component lipid nanoparticles (LNPs). …”
    Get full text
    Article
  15. 495
  16. 496
  17. 497

    An XGBoost-SHAP Model for Energy Demand Prediction With Boruta&#x2013;Lasso Feature Selection by Yiwen Wang, Weibin Cheng, Yuting Jin, Jifei Li, Yantian Yang, Shaobing Hu

    Published 2025-01-01
    “…This study proposes an interpretable ML framework for energy demand prediction based on the Boruta-Lasso two-stage feature selection model, extreme gradient boosting (XGBoost) regression model, grid search optimization algorithm, and Shapley additive explanations (SHAP) algorithm. …”
    Get full text
    Article
  18. 498

    Advancing Precision Medicine for Hypertensive Nephropathy: A Novel Prognostic Model Incorporating Pathological Indicators by Yunlong Qin, Jin Zhao, Yan Xing, Zixian Yu, Panpan Liu, Yuwei Wang, Anjing Wang, Yueqing Hui, Wei Zhao, Mei Han, Meng Liu, Xiaoxuan Ning, Shiren Sun

    Published 2025-01-01
    “…RSF and Cox regression were used to establish a renal prognosis prediction model based on the factors screened by the RSF algorithm. …”
    Get full text
    Article
  19. 499

    A Novel Strategy Coupling Optimised Sampling with Heterogeneous Ensemble Machine-Learning to Predict Landslide Susceptibility by Yongxing Lu, Honggen Xu, Can Wang, Guanxi Yan, Zhitao Huo, Zuwu Peng, Bo Liu, Chong Xu

    Published 2024-10-01
    “…The stacking ensemble machine-learning model outperformed those three baseline models. Notably, the accuracy of the hybrid OS–Stacking model is most promising, up to 97.1%. …”
    Get full text
    Article
  20. 500

    Development of an Efficient and Generalized MTSCAM Model to Predict Liquid Chromatography Retention Times of Organic Compounds by Mengdie Fan, Chenhui Sang, Hua Li, Yue Wei, Bin Zhang, Yang Xing, Jing Zhang, Jie Yin, Wei An, Bing Shao

    Published 2025-01-01
    “…The results demonstrate that this model achieves an R2 of 0.98 and an average prediction error of 23 s, outperforming currently published models. …”
    Get full text
    Article