Search alternatives:
mode » made (Expand Search)
model » madel (Expand Search)
Showing 721 - 740 results of 1,414 for search '((mode OR model) OR more) screening algorithm', query time: 0.20s Refine Results
  1. 721

    Integrated single-cell and bulk RNA dequencing to identify and validate prognostic genes related to T Cell senescence in acute myeloid leukemia by Mengyao Sha, Jun Chen, Haifeng Hou, Huaihui Dou, Yan Zhang

    Published 2025-06-01
    “…Univariate and multivariate regression analyses were performed to screen prognostic genes using the AML Cohort in The Cancer Genome Atlas (TCGA) Database (TCGA-LAML), and risk models were constructed to identify high-risk and low-risk patients. …”
    Get full text
    Article
  2. 722

    Translational medicine research on the role of key gene network modulation mediated by procyanidin B2 in the precise diagnosis and treatment of multiple sclerosis by Jian Liu, Meng Pu, Di Guo, Ying Xiao, Jin-zhu Yin, Dong Ma, Cun-gen Ma, Qing Wang

    Published 2025-07-01
    “…Eight machine learning algorithms were employed to screen key genes, and nomograms and ROC curves were constructed to assess the value of the screened biomarker genes in MS diagnosis. …”
    Get full text
    Article
  3. 723

    A large-scale prospective nested case-control study: developing a comprehensive risk prediction model for early detection of pancreatic cancer in the community-based ESPRIT-AI coho... by Chaoliang Zhong, Penghao Li, Jia Zhao, Xue Han, Beilei Wang, Gang Jin

    Published 2025-02-01
    “…Multiple machine learning algorithms were compared, with the best performing algorithm selected for the final predictive model, subsequently validated using a real-world external test cohort. …”
    Get full text
    Article
  4. 724

    Construction of a novel radioresistance-related signature for prediction of prognosis, immune microenvironment and anti-tumour drug sensitivity in non-small cell lung cancer by Yanliang Chen, Chan Zhou, Xiaoqiao Zhang, Min Chen, Meifang Wang, Lisha Zhang, Yanhui Chen, Litao Huang, Junjun Sun, Dandan Wang, Yong Chen

    Published 2025-12-01
    “…The least absolute shrinkage and selection operator (LASSO) regression and random survival forest (RSF) were used to screen for prognostically relevant RRRGs. Multivariate Cox regression was used to construct a risk score model. …”
    Get full text
    Article
  5. 725

    Predicting onset of myopic refractive error in children using machine learning on routine pediatric eye examinations only by Yonina Ron, Tchelet Ron, Naomi Fridman, Anat Goldstein

    Published 2025-08-01
    “…This study develops machine learning (ML) models to predict future myopia development. These models utilize easily accessible, non-invasive data gathered during standard eye clinic visits, deliberately excluding more complex measurements such as axial length or corneal curvature. …”
    Get full text
    Article
  6. 726

    Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning by Yan Yan, Jingjing Lei, Yuqing Huang

    Published 2024-11-01
    “…In this study, the performance of predictive biomass regression equations and machine learning algorithms, including multivariate linear stepwise regression (MLSR), support vector machine regression (SVR), and k-nearest neighbor (KNN) for constructing a predictive forest AGB model was analyzed and compared at individual tree and stand scales based on forest parameters extracted by Unmanned Aerial Vehicle–Light Detection and Ranging (UAV LiDAR) and variables screened by variable projection importance analysis to select the best prediction method. …”
    Get full text
    Article
  7. 727
  8. 728

    Predicting Superaverage Length of Stay in COPD Patients with Hypercapnic Respiratory Failure Using Machine Learning by Zuo B, Jin L, Sun Z, Hu H, Yin Y, Yang S, Liu Z

    Published 2025-05-01
    “…Ten machine learning algorithms were used to develop and validate a model for predicting superaverage length of stay, and the best model was evaluated and selected.Results: We screened 83 candidate variables using the Boruta algorithm and identified 9 potentially important variables, including: cerebrovascular disease, white blood cell count, hematocrit, D-dimer, activated partial thromboplastin time, fibrin degradation products, partial pressure of carbon dioxide, reduced hemoglobin, and oxyhemoglobin. …”
    Get full text
    Article
  9. 729

    Recent Applications of In Silico Approaches for Studying Receptor Mutations Associated with Human Pathologies by Matteo Pappalardo, Federica Maria Sipala, Milena Cristina Nicolosi, Salvatore Guccione, Simone Ronsisvalle

    Published 2024-11-01
    “…The reported techniques include virtual screening, homology modeling, threading, docking, and molecular dynamics. …”
    Get full text
    Article
  10. 730

    Driver injury severity in two-vehicle accidents considering collision role by JIN Wenzhou, PEI Xiaohang, TANG Zuogan, YAO Yinjie

    Published 2022-03-01
    “…In order to study the influencing factors of driver injury severity and the interaction effects of collision roles in two-vehicle accidents, based on the data of two-vehicle collision accidents in Shenzhen from 2018 to 2020, we calculate the value of importance degree of characteristic variables by using random forest algorithm to screen out the candidate independent variables, and establish a binary logit model of driver injury severity considering collision angle. …”
    Get full text
    Article
  11. 731

    Rapid and Non-destructive Detection of Rice Protein Content Based on Near Infrared Spectroscopy by Siping TAN, Jicheng YUE, Ying CHEN, Cuihong HUANG, Danhua ZHOU, Huijuan ZHANG, Guili YANG, Hui WANG

    Published 2024-10-01
    “…Based on near infrared spectroscopy (NIRS), four pretreatment methods were used: first-order smooth derivative (SG1), second-order smooth derivative (SG2), standard normal variable (SNV) and detrend algorithm (Detrend). The near infrared detection model of rice protein contents in rice, brown rice and milled rice were established by using partial least square (PLS) method.…”
    Get full text
    Article
  12. 732

    Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Com... by L. E. Simms, N. Yu. Ganushkina, M. Van derKamp, M. Balikhin, M. W. Liemohn

    Published 2023-05-01
    “…Abstract We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. …”
    Get full text
    Article
  13. 733

    Machine learning applications in the analysis of sedentary behavior and associated health risks by Ayat S Hammad, Ayat S Hammad, Ali Tajammul, Ismail Dergaa, Ismail Dergaa, Ismail Dergaa, Maha Al-Asmakh, Maha Al-Asmakh

    Published 2025-06-01
    “…The review highlights the utility of various ML approaches in classifying activity levels and significantly improving the prediction of sedentary behavior, offering a promising approach to address this widespread health issue.ConclusionML algorithms, including supervised and unsupervised models, show great potential in accurately detecting and predicting sedentary behavior. …”
    Get full text
    Article
  14. 734
  15. 735

    Big data for imaging assessment in glaucoma by Douglas R. da Costa, Felipe A. Medeiros

    Published 2024-09-01
    “…With the rapid development of computational technologies, artificial intelligence (AI) and deep learning (DL) algorithms are emerging as potential tools for screening, diagnosing, and monitoring glaucoma progression. …”
    Get full text
    Article
  16. 736
  17. 737

    Liquid chromatography-mass spectrometry-based metabolic panels characteristic for patients with prostate cancer and prostate-specific antigen levels of 4–10 ng/mL by Chen Wang, Ting Chen, Teng-Fei Gu, Sheng-Ping Hu, Yong-Tao Pan, Jie Li

    Published 2025-03-01
    “…Based on the identified metabolites, LASSO regression was applied for variable selection, and logistic regression and support vector machine models were developed. Results: The LASSO algorithm’s ability to select variables effectively reduced redundant features and minimized model overfitting. …”
    Get full text
    Article
  18. 738

    Machine Learning Techniques Applied to COVID-19 Prediction: A Systematic Literature Review by Yunyun Cheng, Rong Cheng, Ting Xu, Xiuhui Tan, Yanping Bai

    Published 2025-05-01
    “…By establishing a multi-level classification framework that included traditional statistical models (such as ARIMA), ML models (such as SVM), deep learning (DL) models (such as CNN, LSTM), ensemble learning methods (such as AdaBoost), and hybrid models (such as the fusion architecture of intelligent optimization algorithms and neural networks), it revealed that the hybrid modelling strategy effectively improved the prediction accuracy of the model through feature combination optimization and model cascade integration. …”
    Get full text
    Article
  19. 739

    Preference-based expensive multi-objective optimization without using an ideal point by Peipei Zhao, Liping Wang, Qicang Qiu

    Published 2025-06-01
    “…The Gaussian process model is built on the objective functions. In the model-based optimization, the projection distance with upper confidence bound (UCB) is developed as the fitness of solutions for each subproblem. …”
    Get full text
    Article
  20. 740

    Prediction of formation pressure in underground gas storage based on data-driven method by SUI Gulei, FU Yujiang, ZHU Hongxiang, LI Zunzhao, WANG Xiaolin

    Published 2023-05-01
    “…The optimal warping path is weighted by the proportion of gas injection-production to screen pressure monitoring wells. The supervised learning model of formation pressure forecasting is established by three kinds of machine learning algorithms including extreme gradient boosting (XGBoost), support vector regression (SVR), and long short-term memory network (LSTM). …”
    Get full text
    Article