Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 1,221 - 1,240 results of 1,273 for search '((mode OR made) OR model) screening algorithm', query time: 0.21s Refine Results
  1. 1221

    Prediction and validation of anoikis-related genes in neuropathic pain using machine learning. by Yufeng He, Ye Wei, Yongxin Wang, Chunyan Ling, Xiang Qi, Siyu Geng, Yingtong Meng, Hao Deng, Qisong Zhang, Xiaoling Qin, Guanghui Chen

    Published 2025-01-01
    “…We also used rats to construct an NP model and validated the analyzed hub genes using hematoxylin and eosin (H&E) staining, real-time polymerase chain reaction (PCR), and Western blotting assays.…”
    Get full text
    Article
  2. 1222

    Prognostic, oncogenic roles, and pharmacogenomic features of AMD1 in hepatocellular carcinoma by Youliang Zhou, Yi Zhou, Jiabin Hu, Yao Xiao, Yan Zhou, Liping Yu

    Published 2024-12-01
    “…Univariate Cox regression analysis and Pearson correlation were used to screen for AMD1-related genes (ARGs). Multidimensional bioinformatic algorithms were utilized to establish a risk score model for ARGs. …”
    Get full text
    Article
  3. 1223

    Identification of glucocorticoid-related genes in systemic lupus erythematosus using bioinformatics analysis and machine learning. by Yinghao Ren, Weiqiang Chen, Yuhao Lin, Zeyu Wang, Weiliang Wang

    Published 2025-01-01
    “…Furthermore, we utilized least absolute shrinkage and selection operator (LASSO) regression and Random Forest (RF) algorithms to screen for hub genes. We then validated the expression of these hub genes and constructed nomograms for further validation. …”
    Get full text
    Article
  4. 1224

    DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure by Wenwu Tang, Wenwu Tang, Zhixin Wang, Xinzhu Yuan, Liping Chen, Haiyang Guo, Zhirui Qi, Ying Zhang, Xisheng Xie

    Published 2025-01-01
    “…In addition, we further explored potential mechanism and function of hub genes in HF of patients with MHD through GSEA, immune cell infiltration analysis, drug analysis and establishment of molecular regulatory network.ResultsTotally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …”
    Get full text
    Article
  5. 1225

    Exploration of biomarkers for predicting the prognosis of patients with diffuse large B-cell lymphoma by machine-learning analysis by Shifen Wang, Hong Tao, Xingyun Zhao, Siwen Wu, Chunwei Yang, Yuanfei Shi, Zhenshu Xu, Dawei Cui

    Published 2025-08-01
    “…Moreover, four hub genes (CXCL9, CCL18, C1QA and CTSC) were significantly screened from the three datasets using RF algorithms. …”
    Get full text
    Article
  6. 1226

    Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach by Huali Jiang, Weijie Chen, Benfa Chen, Tao Feng, Heng Li, Dan Li, Shanhua Wang, Weijie Li

    Published 2025-07-01
    “…Machine learning algorithms (Support Vector Machine (SVM), Random Forest (RF) and Least Absolute Shrinkage and Selection Operator (LASSO)) were applied to identify hub genes. …”
    Get full text
    Article
  7. 1227

    Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review by Ethan E Abbott, Donald Apakama, Lynne D Richardson, Lili Chan, Girish N Nadkarni

    Published 2024-10-01
    “…With a significant focus on the ED and notable NLP model performance, there is an imperative to standardize SDOH data collection, refine algorithms for diverse patient groups, and champion interdisciplinary synergies. …”
    Get full text
    Article
  8. 1228

    MSGEGA: Multiscale Gaussian Enhancement and Global-Aware Network for Infrared Small Target Detection by Yuyang Xi, Liuwei Zhang, Ying Jiang, Feng Qian, Fanjiao Tan, Qingyu Hou

    Published 2025-01-01
    “…Specifically, the proposed method demonstrates significant advantages on the screened dataset, achieving an AUC of 0.992. At a detection rate of 0.871, it maintains a false alarm rate of 0.9<italic>e</italic>-5, outperforming all comparison algorithms. …”
    Get full text
    Article
  9. 1229

    Mesangial cell-derived CircRNAs in chronic glomerulonephritis: RNA sequencing and bioinformatics analysis by Ji Hui Fan, Xiao Min Li

    Published 2024-12-01
    “…Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. …”
    Get full text
    Article
  10. 1230

    A novel nomogram for survival prediction in renal cell carcinoma patients with brain metastases: an analysis of the SEER database by Fei Wang, Xihao Wang, Zhigang Feng, Jun Li, Hailiang Xu, Hengming Lu, Lianqu Wang, Zhihui Li

    Published 2025-06-01
    “…Potential risk factors were initially screened applying the eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) machine learning algorithms. …”
    Get full text
    Article
  11. 1231

    Deciphering mitochondrial dysfunction in keratoconus: Insights into ACSL4 from machine learning-based bulk and single-cell transcriptome analyses and experimental validation by Yuchen Cai, Tianyi Zhou, Xueyao Cai, Wenjun Shi, Hao Sun, Yao Fu

    Published 2025-01-01
    “…Hub genes were further screened and validated by multiple machine learning (ML) algorithms, followed by a comprehensive visualization of single-cell atlas and immune landscape. …”
    Get full text
    Article
  12. 1232

    Identification and mechanism analysis of biomarkers related to butyrate metabolism in COVID-19 patients by Wenchao Zhou, Hui Li, Juan Zhang, Changsheng Liu, Dan Liu, Xupeng Chen, Jing Ouyang, Tian Zeng, Shuang Peng, Fan Ouyang, Yunzhu Long, Yukun Li

    Published 2025-12-01
    “…Six machine learning algorithms were employed to determine the best model for identifying biomarkers, and receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic value of the biomarkers in COVID-19. …”
    Get full text
    Article
  13. 1233

    Exploring Mechanisms of Lang Qing Ata in Non-Alcoholic Steatohepatitis Based on Metabolomics, Network Pharmacological Analysis, and Experimental Validation by Li S, Zhu H, Zhai Q, Hou Y, Yang Y, Lan H, Jiang M, Xuan J

    Published 2025-03-01
    “…These discoveries were further validated in subsequent mouse models. An HFHC-induced NASH mouse model was used to validate the therapeutic effects and potential mechanisms of LQAtta on NASH.Results: From the UHPLC-MS/MS analysis of LQAtta, a total of 1518 chemical components were identified, with 106 of them being absorbed into the bloodstream. …”
    Get full text
    Article
  14. 1234

    Microarray profile of circular RNAs identifies CBT15_circR_28491 and T helper cells as new regulators for deep vein thrombosis by Weiwei Chen, Ying Zhu, Sihua Niu, Yan Zhou, Jian Chang, Shujie Gan

    Published 2025-06-01
    “…Finally, a DVT rat model was established to verify the expression of critical circRNAs and hub genes using real-time quantitative PCR.ResultsA total of 421 circRNAs and 1,082 mRNAs were differentially expressed in DVT. …”
    Get full text
    Article
  15. 1235
  16. 1236

    Estimation of the water content of needles under stress by Erannis jacobsoni Djak. via Sentinel-2 satellite remote sensing by Jiaze Guo, Xiaojun Huang, Xiaojun Huang, Xiaojun Huang, Debao Zhou, Junsheng Zhang, Gang Bao, Gang Bao, Siqin Tong, Siqin Tong, Yuhai Bao, Yuhai Bao, Dashzebeg Ganbat, Dorjsuren Altanchimeg, Davaadorj Enkhnasan, Mungunkhuyag Ariunaa

    Published 2025-04-01
    “…Multiple vegetation indices are screened via recursive feature elimination cross validation (RFECV), and then support vector regression (SVR) and back-propagation neural network (BP) models are used to predict the leaf weight content fresh (LWCF) and leaf weight content dry (LWCD) of needles over a large area. …”
    Get full text
    Article
  17. 1237

    Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques by Liuqing Yang, Liuqing Yang, Liuqing Yang, Rui Xuan, Rui Xuan, Rui Xuan, Dawei Xu, Dawei Xu, Dawei Xu, Aming Sang, Aming Sang, Aming Sang, Jing Zhang, Jing Zhang, Jing Zhang, Yanfang Zhang, Xujun Ye, Xinyi Li, Xinyi Li, Xinyi Li

    Published 2025-03-01
    “…The utilization of the receiver operating characteristic curve in conjunction with the nomogram model served to authenticate the discriminatory strength and efficacy of the key genes. …”
    Get full text
    Article
  18. 1238

    Identification of biomarkers associated with inflammatory response in Parkinson's disease by bioinformatics and machine learning. by Yatan Li, Wei Jia, Chen Chen, Cheng Chen, Jinchao Chen, Xinling Yang, Pei Liu

    Published 2025-01-01
    “…LASSO, SVM-RFE and Random Forest algorithms were used to screen biomarker genes. Then, ROC curves were drawn and PD risk predicting models were constructed on the basis of the biomarker genes. …”
    Get full text
    Article
  19. 1239

    Identification of subtypes and biomarkers associated with disulfidptosis-related ferroptosis in ulcerative colitis by Yinghao Jiang, Hongyan Meng, Xin Zhang, Jinguang Yang, Chengxin Sun, Xiaoyan Wang

    Published 2025-02-01
    “…Next, the hub genes were identified by differential analysis and WGCNA algorithms, and three machine learning algorithms were used to screen biomarkers for UC from hub genes. …”
    Get full text
    Article
  20. 1240

    Identifying potential three key targets gene for septic shock in children using bioinformatics and machine learning methods by Wei Guo, Hao Chen, Feng Wang, Yingjiao Chi, Wei Zhang, Shan Wang, Kezhu Chen, Hong Chen

    Published 2025-06-01
    “…Three kinds of machine learning models were established, and the candidate genes were screened by intersection to obtain the core genes with diagnostic value. …”
    Get full text
    Article