Search alternatives:
mode » more (Expand Search)
model » morel (Expand Search)
Showing 561 - 580 results of 1,273 for search '((mode OR made) OR model) screening algorithm', query time: 0.17s Refine Results
  1. 561

    Predicting the risk of postoperative gastrointestinal bleeding in patients with Type A aortic dissection based on an interpretable machine learning model by Lin Li, Xing Yang, Wei Guo, Wenxian Wu, Meixia Guo, Huanhuan Li, Xueyan Wang, Siyu Che

    Published 2025-05-01
    “…Predictors were screened using LASSO regression, and four ML algorithms—Random Forest (RF), K-nearest neighbor (KNN), Support Vector Machines (SVM), and Decision Tree (DT)—were employed to construct models for predicting postoperative GIB risk. …”
    Get full text
    Article
  2. 562

    Assessment of prostate cancer aggressiveness through the combined analysis of prostate MRI and 2.5D deep learning models by Yalei Wang, Yuqing Xin, Baoqi Zhang, Fuqiang Pan, Xu Li, Manman Zhang, Yushan Yuan, Lei Zhang, Peiqi Ma, Bo Guan, Yang Zhang

    Published 2025-06-01
    “…Models were constructed using the LightGBM algorithm: a radiomic feature model, a deep learning feature model, and a combined model integrating radiomic and deep learning features. …”
    Get full text
    Article
  3. 563

    Assessment of food toxicology by Alexander Gosslau

    Published 2016-09-01
    “…Integration of food toxicology data obtained throughout biochemical and cell-based in vitro, animal in vivo and human clinical settings has enabled the establishment of alternative, highly predictable in silico models. These systems utilize a combination of complex in vitro cell-based models with computer-based algorithms. …”
    Get full text
    Article
  4. 564
  5. 565

    Prediction of recurrence after surgery for pituitary adenoma using machine learning- based models: systematic review and meta-analysis by Ibrahim Mohammadzadeh, Bardia Hajikarimloo, Behnaz Niroomand, Nasira Faizi, Pooya Eini, Mohammad Amin Habibi, Alireza Mohseni, Mohammadmahdi Sabahi, Abdulrahman Albakr, Michael Karsy, Hamid Borghei-Razavi

    Published 2025-07-01
    “…For the comparison between Logistic Regression (LR) and non-LR algorithms, LR-based algorithms exhibited numerically higher AUC and sensitivity; however, these differences were not statistically significant. …”
    Get full text
    Article
  6. 566
  7. 567

    Identification of developmental and reproductive toxicity of biocides in consumer products using ToxCast bioassays data and machine learning models by Donghyeon Kim, Siyeol Ahn, Jinhee Choi

    Published 2025-08-01
    “…This study aimed to identify ToxCast bioassays relevant to DART and develop machine learning models to screen biocides in consumer products for their DART potential. …”
    Get full text
    Article
  8. 568

    Construction and analysis of a prognostic risk scoring model for gastric cancer anoikis-related genes based on LASSO regression by Ai CHEN, Xiaowei CHEN, Yanan WANG, Xiaobing SHEN

    Published 2024-08-01
    “…ResultsSix key ARGs (VCAN, FEN1, BRIP1, CNTN1, P3H2, DUSP1) were screened out based on LASSO regression analysis, and a prognostic risk scoring model was constructed. …”
    Get full text
    Article
  9. 569

    Construction and Validation of a Hospital Mortality Risk Model for Advanced Elderly Patients with Heart Failure Based on Machine Learning by Shang S, Wei M, Lv H, Liang X, Lu Y, Tang B

    Published 2025-06-01
    “…Shuai Shang,1,2,* Meng Wei,1,2,* Huasheng Lv,1,2,* Xiaoyan Liang,1,2 Yanmei Lu,1,2 Baopeng Tang1,2 1Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China; 2Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China*These authors contributed equally to this workCorrespondence: Baopeng Tang, Department of Cardiac Pacing and Electrophysiology, Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi Zone, Urumqi, People’s Republic of China, Email tangbaopeng1111@163.com Yanmei Lu, Department of Cardiac Pacing and Electrophysiology, Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi Zone, Urumqi, People’s Republic of China, Email gracy@189.cnPurpose: This study aimed to develop and validate a model based on machine learning algorithms to predict the risk of in-hospital death among advanced elderly patients with Heart Failure (HF).Methods: A total of 4580 advanced elderly patients who were admitted to the hospital and diagnosed with HF from May 2012 to September 2023 were included in this study, among whom 552 cases (12.5%) died. …”
    Get full text
    Article
  10. 570

    Artificial intelligence in primary aldosteronism: current achievements and future challenges by Yisi Xu, Benjin Liu, Xuqi Huang, Xudong Guo, Ning Suo, Shaobo Jiang, Hanbo Wang

    Published 2025-08-01
    “…Recent advances in artificial intelligence (AI) are reshaping the diagnostic and therapeutic of primary aldosteronism (PA). For screening, machine learning models integrate multidimensional data to improve the efficiency of PA detection, facilitating large-scale population screening. …”
    Get full text
    Article
  11. 571

    Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in hepatocellular carcinoma by Yuxuan Li, Mingbo Cao, Xiaorui Su, Gaoyuan Yang, Yupeng Ren, Zhiwei He, Zheng Shi, Ziyi Hu, Guirong Liang, Qi Zhang, Zhicheng Yao, Meihai Deng

    Published 2025-07-01
    “…In this study, transcriptomic data from the TCGA-LIHC dataset were used to identify differentially expressed cytoskeleton-related genes associated with overall survival (OS). Prognostic models were constructed using LASSO regression and random forest algorithms, and validated in two independent cohorts (ICGC LIRI-JP and CHCC-HBV). …”
    Get full text
    Article
  12. 572

    An early lung cancer diagnosis model for non-smokers incorporating ct imaging analysis and circulating genetically abnormal cells (CACs) by Ran Ni, Yongjie Huang, Lei Wang, Hongjie Chen, Guorui Zhang, Yali Yu, Yinglan Kuang, Yuyan Tang, Xing Lu, Hong Liu

    Published 2025-01-01
    “…Five artificial intelligence (AI) algorithms were used to build two kinds of models and identify which one was better at diagnosing non-smoking pulmonary nodules patients. …”
    Get full text
    Article
  13. 573

    Machine learning models to predict osteoporosis in patients with chronic kidney disease stage 3–5 and end-stage kidney disease by Chia-Tien Hsu, Chin-Yin Huang, Cheng-Hsu Chen, Ya-Lian Deng, Shih-Yi Lin, Ming-Ju Wu

    Published 2025-04-01
    “…Calibration and decision curve analyses further demonstrated the reliability and applicability of the ANN model. The ANN model demonstrated the potential for clinical implementation in screening high-risk patients for osteoporosis.…”
    Get full text
    Article
  14. 574

    PLOD3 as a novel oncogene in prognostic and immune infiltration risk model based on multi-machine learning in cervical cancer by Lingling Qiu, Xiuchai Qiu, Xiaoyi Yang

    Published 2025-03-01
    “…We identified 112 key metabolic genes, which were used to construct and validate a prognostic model through various machine learning algorithms. …”
    Get full text
    Article
  15. 575

    Learning from the machine: is diabetes in adults predicted by lifestyle variables? A retrospective predictive modelling study of NHANES 2007–2018 by Efrain Riveros Perez, Bibiana Avella-Molano

    Published 2025-03-01
    “…This study is innovative in its integration of machine learning algorithms to predict type 2 diabetes based solely on non-invasive, easily accessible lifestyle and anthropometric variables, demonstrating the potential of data-driven models for early risk assessment without requiring laboratory tests. …”
    Get full text
    Article
  16. 576
  17. 577

    Application of iLogic technology in Autodesk inventor to create parametric 3D-model of a gear wheel and conduct research by Petrakova E.A., Samoilova A.S.

    Published 2020-03-01
    “…The article presents an algorithm and tools for creating controlled 3D models using iLogic on the example of a 3D model of a gear wheel. …”
    Get full text
    Article
  18. 578

    Developing a logistic regression model to predict spontaneous preterm birth from maternal socio-demographic and obstetric history at initial pregnancy registration by Brenda F. Narice, Mariam Labib, Mengxiao Wang, Victoria Byrne, Joanna Shepherd, Z. Q. Lang, Dilly OC Anumba

    Published 2024-10-01
    “…A three-fold cross-validation technique was applied with subsets for data training and testing in Python® (version 3.8) using the most predictive factors. The model performance was then compared to the previously published predictive algorithms. …”
    Get full text
    Article
  19. 579

    Analysis of immune status and prognostic model incorporating lactate metabolism and immune-related genes in clear cell renal cell carcinoma by Jun Wu, Yuqian Wu, Yefeng Sun, Jianhang You, Wenjie Zhang, Tao Zhao

    Published 2025-06-01
    “…The Cox proportional hazards regression model and the LASSO algorithm were combined to screen the core genes related to prognosis. …”
    Get full text
    Article
  20. 580

    Utilizing SMOTE-TomekLink and machine learning to construct a predictive model for elderly medical and daily care services demand by Guangmei Yang, Guangdong Wang, Leping Wan, Xinle Wang, Yan He

    Published 2025-03-01
    “…The LightGBM algorithm emerged as the superior prediction model for estimating the service needs of the elderly. …”
    Get full text
    Article