Search alternatives:
resource » source (Expand Search)
Showing 561 - 580 results of 2,992 for search '(( sources selection function ) OR (( resource OR sources) detection functions ))', query time: 0.30s Refine Results
  1. 561

    YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles by Shimin Weng, Han Wang, Jiashu Wang, Changming Xu, Ende Zhang

    Published 2025-07-01
    “…Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. …”
    Get full text
    Article
  2. 562

    Surface Defect Detection for Small Samples of Particleboard Based on Improved Proximal Policy Optimization by Haifei Xia, Haiyan Zhou, Mingao Zhang, Qingyi Zhang, Chenlong Fan, Yutu Yang, Shuang Xi, Ying Liu

    Published 2025-04-01
    “…The method integrates the variable action space and the composite reward function and achieves the balanced optimization of different types of defect detection performance by adjusting the scaling and translation amplitude of the detection region. …”
    Get full text
    Article
  3. 563
  4. 564

    MSSA: multi-stage semantic-aware neural network for binary code similarity detection by Bangrui Wan, Jianjun Zhou, Ying Wang, Feng Chen, Ying Qian

    Published 2025-01-01
    “…Binary code similarity detection (BCSD) aims to identify whether a pair of binary code snippets is similar, which is widely used for tasks such as malware analysis, patch analysis, and clone detection. …”
    Get full text
    Article
  5. 565

    FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image by Siyuan Zhao, Yong Kang, Hang Yuan, Guan Wang, Hui Wang, Shichao Xiong, Ying Luo

    Published 2025-06-01
    “…Heterogeneous Synthetic Aperture Radar (SAR) image object detection task with inconsistent joint probability distributions is occurring more and more frequently in practical applications. …”
    Get full text
    Article
  6. 566
  7. 567

    App-DDoS detection method using partial binary tree based SVM algorithm by Bin ZHANG, Zihao LIU, Shuqin DONG, Lixun LI

    Published 2018-03-01
    “…As it ignored the detection of ramp-up and pulsing type of application layer DDoS (App-DDoS) attacks in existing flow-based App-DDoS detection methods,an effective detection method for multi-type App-DDoS was proposed.Firstly,in order to fast count the number of HTTP GET for users and further support the calculation of feature parameters applied in detection method,the indexes of source IP address in multiple time windows were constructed by the approach of Hash function.Then the feature parameters by combining SVM classifiers with the structure of partial binary tree were trained hierarchically,and the App-DDoS detection method was proposed with the idea of traversing binary tree and feedback learning to distinguish non-burst normal flow,burst normal flow and multi-type App-DDoS flows.The experimental results show that compared with the conventional SVM-based and naïve-Bayes-based detection methods,the proposed method has more excellent detection performance and can distinguish specific App-DDoS types through subdividing attack types and training detection model layer by layer.…”
    Get full text
    Article
  8. 568
  9. 569

    Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers by Pavel Lyakhov, Denis Butusov, Vadim Pismennyy, Ruslan Abdulkadirov, Nikolay Nagornov, Valerii Ostrovskii, Diana Kalita

    Published 2025-06-01
    “…The developed algorithms for training NN architectures improved the accuracy of drone detection by achieving the global extremum of the loss function in fewer epochs using positive–negative pulse-based optimization algorithms. …”
    Get full text
    Article
  10. 570

    A lightweight UAV target detection algorithm based on improved YOLOv8s model by Fubao Ma, Ran Zhang, Bowen Zhu, Xirui Yang

    Published 2025-05-01
    “…Furthermore, the original loss function is replaced with SIoU to enhance detection accuracy. …”
    Get full text
    Article
  11. 571

    A Lightweight Network for UAV Multi-Scale Feature Fusion-Based Object Detection by Sheng Deng, Yaping Wan

    Published 2025-03-01
    “…To tackle the issues of small target sizes, missed detections, and false alarms in aerial drone imagery, alongside the constraints posed by limited hardware resources during model deployment, a streamlined object detection approach is proposed to enhance the performance of YOLOv8s. …”
    Get full text
    Article
  12. 572

    Research on underwater disease target detection method of inland waterway based on deep learning by Tao Yu, Yu Xie, Jinsong Luo, Wei Zhu, Jie Liu

    Published 2025-04-01
    “…Abstract Aiming at the problems of low detection accuracy and poor generalization ability of underwater disease targets in inland waterways, an underwater disease target detection algorithm for inland waterways based on improved YOLOv5 is designed, which is denoted as YOLOv5-GBCE. …”
    Get full text
    Article
  13. 573
  14. 574

    Self-Powered Microsystem for Ultra-Fast Crash Detection via Prestressed Triboelectric Sensing by Yiqun Wang, Yuhan Wang, Xinzhi Liu, Xiaofeng Wang, Keren Dai, Zheng You

    Published 2025-01-01
    “…We further developed a self-powered, compact (<4.5 cm3) microsystem that integrates the shock sensor, a signal processing module, airbag triggering circuitry, and a high-g-resistant supercapacitor as a backup power source. The microsystem achieves ultra-fast shock detection and airbag activation with a delay of less than 0.2 ms. …”
    Get full text
    Article
  15. 575

    STAR-YOLO: A High-Accuracy and Ultra-Lightweight Method for Brain Tumor Detection by Liyan Sun, Linxuan Zheng, Zhiguo Xiao, Yi Xin, Linqing Jiang

    Published 2025-01-01
    “…STAR-YOLO accomplishes a lightweight design while guaranteeing high detection accuracy, prominently demonstrating its immense potential in the diagnosis of clinical brain tumors, particularly in circumstances with constrained computing resources.…”
    Get full text
    Article
  16. 576
  17. 577

    YOLOv9-GDV: A Power Pylon Detection Model for Remote Sensing Images by Ke Zhang, Ningxuan Zhang, Chaojun Shi, Qiaochu Lu, Xian Zheng, Yujie Cao, Xiaoyun Zhang, Jiyuan Yang

    Published 2025-06-01
    “…Finally, the Variable Minimum Point Distance Intersection over Union (VMPDIoU) loss is proposed to optimize the model’s loss function. This method employs variable input parameters to directly calculate key point distances between predicted and ground-truth boxes, more accurately reflecting positional differences between detection results and reference targets, thus effectively improving the model’s mean Average Precision (mAP). …”
    Get full text
    Article
  18. 578

    A Versatile Algorithm for Autofocusing SAR Images by A. A. Monakov

    Published 2021-02-01
    “…Adjusting the algorithm for the selected objective function requires minimal software changes. …”
    Get full text
    Article
  19. 579

    GSF-YOLOv8: A Novel Approach for Fire Detection Using Gather-Distribute Mechanism and SimAM Attention by Caixiong Li, Dali Wu, Xing Zhang, Peng Wu

    Published 2025-01-01
    “…To address the current challenges in fire detection algorithms, including insufficient feature extraction, high computational complexity, limited deployment on resource-constrained devices, missed detections, false detections, and low accuracy, we developed a high-precision algorithm named GSF-YOLOv8. …”
    Get full text
    Article
  20. 580

    YOLOLS: A Lightweight and High-Precision Power Insulator Defect Detection Network for Real-Time Edge Deployment by Qinglong Wang, Zhengyu Hu, Entuo Li, Guyu Wu, Wengang Yang, Yunjian Hu, Wen Peng, Jie Sun

    Published 2025-03-01
    “…However, deploying deep learning models on edge devices presents significant challenges due to limited computational resources and strict latency constraints. To address these issues, we propose YOLOLS, a lightweight and efficient detection model derived from YOLOv8n and optimized for real-time edge deployment. …”
    Get full text
    Article