-
361
Testing the functionality and contact error of a GPS‐based wildlife tracking network
Published 2013-12-01Get full text
Article -
362
Quantifying the spatial impact of an invasive Acacia on ecosystem functioning using remote sensing
Published 2025-01-01Get full text
Article -
363
-
364
-
365
Automated Dead Chicken Detection in Poultry Farms Using Knowledge Distillation and Vision Transformers
Published 2024-12-01“…Then, a deep learning classifier, enhanced through knowledge distillation, confirms whether the detected stationary object is indeed a chicken. EfficientNet-B0 is employed as the teacher model, while DeiT-Tiny functions as the student model, balancing high accuracy and computational efficiency. …”
Get full text
Article -
366
Automatic detection of human gait events: a simple but versatile 3D algorithm
Published 2025-05-01Get full text
Article -
367
Leveraging large language models for automated detection of velopharyngeal dysfunction in patients with cleft palate
Published 2025-03-01“…BackgroundHypernasality, a hallmark of velopharyngeal insufficiency (VPI), is a speech disorder with significant psychosocial and functional implications. Conventional diagnostic methods rely heavily on specialized expertise and equipment, posing challenges in resource-limited settings. …”
Get full text
Article -
368
FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image
Published 2025-06-01“…Heterogeneous Synthetic Aperture Radar (SAR) image object detection task with inconsistent joint probability distributions is occurring more and more frequently in practical applications. …”
Get full text
Article -
369
Network security traffic detection and legal supervision based on adaptive metric learning algorithm
Published 2025-09-01Get full text
Article -
370
App-DDoS detection method using partial binary tree based SVM algorithm
Published 2018-03-01“…As it ignored the detection of ramp-up and pulsing type of application layer DDoS (App-DDoS) attacks in existing flow-based App-DDoS detection methods,an effective detection method for multi-type App-DDoS was proposed.Firstly,in order to fast count the number of HTTP GET for users and further support the calculation of feature parameters applied in detection method,the indexes of source IP address in multiple time windows were constructed by the approach of Hash function.Then the feature parameters by combining SVM classifiers with the structure of partial binary tree were trained hierarchically,and the App-DDoS detection method was proposed with the idea of traversing binary tree and feedback learning to distinguish non-burst normal flow,burst normal flow and multi-type App-DDoS flows.The experimental results show that compared with the conventional SVM-based and naïve-Bayes-based detection methods,the proposed method has more excellent detection performance and can distinguish specific App-DDoS types through subdividing attack types and training detection model layer by layer.…”
Get full text
Article -
371
Employing SAE-GRU deep learning for scalable botnet detection in smart city infrastructure
Published 2025-04-01“…These findings enhance the understanding of IoT security by offering a scalable and resource-efficient solution for botnet detection. The functional investigation establishes a foundation for future research into adaptive security mechanisms that address emerging threats and highlights the practical potential of advanced deep learning techniques in safeguarding next-generation smart city ecosystems.…”
Get full text
Article -
372
-
373
Self-Powered Microsystem for Ultra-Fast Crash Detection via Prestressed Triboelectric Sensing
Published 2025-01-01“…We further developed a self-powered, compact (<4.5 cm3) microsystem that integrates the shock sensor, a signal processing module, airbag triggering circuitry, and a high-g-resistant supercapacitor as a backup power source. The microsystem achieves ultra-fast shock detection and airbag activation with a delay of less than 0.2 ms. …”
Get full text
Article -
374
GESC-YOLO: Improved Lightweight Printed Circuit Board Defect Detection Based Algorithm
Published 2025-05-01“…Printed circuit boards (PCBs) are an indispensable part of electronic products, and their quality is crucial to the operational integrity and functional reliability of these products. Currently, existing PCB defect detection models are beset with issues such as excessive model size and parameter complexity, rendering them ill-equipped to meet the requirements for lightweight deployment on mobile devices. …”
Get full text
Article -
375
RSWD-YOLO: A Walnut Detection Method Based on UAV Remote Sensing Images
Published 2025-04-01“…Furthermore, to optimize the detection performance under hardware resource constraints, we apply knowledge distillation to RSWD-YOLO, thereby further improving the detection accuracy. …”
Get full text
Article -
376
-
377
Classification of SERS spectra for agrochemical detection using a neural network with engineered features
Published 2025-01-01“…Surface-Enhanced Raman Spectroscopy (SERS) substrates offer a promising solution for the sensitive and specific detection of agrochemicals, enabling timely interventions to mitigate their harmful effects on humans and ecosystems. …”
Get full text
Article -
378
YOLOv9-GDV: A Power Pylon Detection Model for Remote Sensing Images
Published 2025-06-01“…Finally, the Variable Minimum Point Distance Intersection over Union (VMPDIoU) loss is proposed to optimize the model’s loss function. This method employs variable input parameters to directly calculate key point distances between predicted and ground-truth boxes, more accurately reflecting positional differences between detection results and reference targets, thus effectively improving the model’s mean Average Precision (mAP). …”
Get full text
Article -
379
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
Published 2025-08-01“…Additionally, a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices. Experimental validation with datasets including independent vibration signals for gear fault detection, mixed vibration signals for concurrent gear and bearing faults, and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.…”
Get full text
Article -
380
GSF-YOLOv8: A Novel Approach for Fire Detection Using Gather-Distribute Mechanism and SimAM Attention
Published 2025-01-01“…To address the current challenges in fire detection algorithms, including insufficient feature extraction, high computational complexity, limited deployment on resource-constrained devices, missed detections, false detections, and low accuracy, we developed a high-precision algorithm named GSF-YOLOv8. …”
Get full text
Article