Search alternatives:
source » sources (Expand Search)
resource » resources (Expand Search)
resourcess » resourcesss (Expand Search)
Showing 401 - 420 results of 1,810 for search '(( source detection functions ) OR (( resource OR resourcess) detection function ))', query time: 0.34s Refine Results
  1. 401
  2. 402
  3. 403

    Lightweight coal miners and manned vehicles detection model based on deep learning and model compression techniques: A case study of coal mines in Guizhou region by Beijing XIE, Heng LI, Zheng LUAN, Zhen LEI, Xiaoxu LI, Zhuo LI

    Published 2025-02-01
    “…Compared to various lightweight architectures and advanced detection models, this method demonstrates excellent accuracy, lower computational costs, and better real-time performance, providing a feasible coal mine pedestrian-vehicle detection method for resource-constrained coal mine scenarios, meeting the deployment requirements of coal mine video surveillance and enabling real-time alerts for intelligent inspection of coal mine pedestrian-vehicles.…”
    Get full text
    Article
  4. 404

    Acoustic Emission as a Method for Analyzing Changes and Detecting Damage in Composite Materials During Loading by Katarzyna PANASIUK, Krzysztof DUDZIK, Grzegorz HAJDUKIEWICZ

    Published 2021-08-01
    “…The signal obtained from the sensor was then further processed and used to draw up diagrams of the AE hits, amplitude, root mean square of the AE source signal (RMS) and duration in the function of time. …”
    Get full text
    Article
  5. 405

    Energy-Efficiency using Critical Nodes Detection Problem in Industrial Wireless Sensor Networks (IWSNs) by Karima MOULEY, Mohamed Amin TAHRAOUI, Abdelaziz KELLA

    Published 2025-03-01
    “…Experiments simulation validates our proposed approach, approving its efficiency in reducing significant energy consumption while preserving connectivity and functionality for industrial systems. Furthermore, the results highlight the potential of using critical node analysis to support sustainable and efficient operations in resource-constrained industrial environments. …”
    Get full text
    Article
  6. 406

    SILVERRUSH. XIV. Lyα Luminosity Functions and Angular Correlation Functions from 20,000 Lyα Emitters at z ∼ 2.2–7.3 from up to 24 deg2 HSC-SSP and CHORUS Surveys: Linking the Postr... by Hiroya Umeda, Masami Ouchi, Satoshi Kikuta, Yuichi Harikane, Yoshiaki Ono, Takatoshi Shibuya, Akio K. Inoue, Kazuhiro Shimasaku, Yongming Liang, Akinori Matsumoto, Shun Saito, Haruka Kusakabe, Yuta Kageura, Minami Nakane

    Published 2025-01-01
    “…We present luminosity functions (LFs) and angular correlation functions (ACFs) derived from 18,960 Ly α emitters (LAEs) at z  = 2.2−7.3 over a wide survey area of ≲24 deg ^2 that are identified in the narrowband data of the HSC-SSP and CHORUS surveys. …”
    Get full text
    Article
  7. 407

    Simple Single-Person Fall Detection Model Using 3D Pose Estimation Mechanisms by Jinmo Yang, R. Young Chul Kim

    Published 2024-01-01
    “…Although various technologies with wearables and vision systems that utilize artificial intelligence (AI) have been developed to detect falls, many AI models are complex and resource-intensive. …”
    Get full text
    Article
  8. 408

    LMGD: Log-Metric Combined Microservice Anomaly Detection Through Graph-Based Deep Learning by Xu Liu, Yuewen Liu, Miaomiao Wei, Peng Xu

    Published 2024-01-01
    “…Therefore, there is an urgent need for fast and accurate anomaly detection capabilities. However, the existing microservice anomaly detection methods do not pay attention to the multi-source data of the microservice system and thus have low accuracy. …”
    Get full text
    Article
  9. 409

    Enhanced Intrusion Detection in In-Vehicle Networks Using Advanced Feature Fusion and Stacking-Enriched Learning by Ali Altalbe

    Published 2024-01-01
    “…To address this problem, machine learning (ML) based intrusion detection systems (IDSs) have been proposed. However, existing IDSs suffer from low detection accuracy, limited real-time response, and high resource requirements. …”
    Get full text
    Article
  10. 410

    Evaluating machine learning-based intrusion detection systems with explainable AI: enhancing transparency and interpretability by Vincent Zibi Mohale, Ibidun Christiana Obagbuwa

    Published 2025-05-01
    “…Machine Learning (ML)-based Intrusion Detection Systems (IDS) are integral to securing modern IoT networks but often suffer from a lack of transparency, functioning as “black boxes” with opaque decision-making processes. …”
    Get full text
    Article
  11. 411

    Securing Industrial IoT Environments: A Fuzzy Graph Attention Network for Robust Intrusion Detection by Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa

    Published 2025-01-01
    “…The Industrial Internet of Things (IIoT) faces significant cybersecurity threats due to its ever-changing network structures, diverse data sources, and inherent uncertainties, making robust intrusion detection crucial. …”
    Get full text
    Article
  12. 412

    F-OSFA: A Fog Level Generalizable Solution for Zero-Day DDOS Attacks Detection by Muhammad Rashid Minhas, Qaisar M. Shafi, Shoab Ahmed Khan, Tahir Ahmad, Subhan Ullah, Attaullah Buriro, Muhammad Azfar Yaqub

    Published 2025-01-01
    “…The third component is a signature-based resource usage analyzer to counter attacks mimicking normal traffic. …”
    Get full text
    Article
  13. 413
  14. 414

    Evaluation of a coastal acoustic buoy for cetacean detections, bearing accuracy and exclusion zone monitoring by Kaitlin J. Palmer, Sam Tabbutt, Douglas Gillespie, Jesse Turner, Paul King, Dominic Tollit, Jessica Thompson, Jason Wood

    Published 2022-11-01
    “…Field trials indicated maximum detection ranges from 4–7.3 km depending on source and ambient noise levels. …”
    Get full text
    Article
  15. 415

    DECISION TREE WITH HILL CLIMBING ALGORITHM BASED SPECTRUM HOLE DETECTION IN COGNITIVE RADIO NETWORK by N Suganthi, R Meenakshi, A Sairam, M Parvathi

    Published 2025-06-01
    “…The approach integrates a Decision Tree (DT) algorithm for rapid initial classification of Primary User (PU) activity, followed by a Hill Climbing (HC) optimization algorithm that fine-tunes the detection based on a fitness function. Entropy and throughput metrics are employed as decision conditions at each sensing channel, enhancing uncertainty measurement and maintaining detection robustness under low Signal-to-Noise Ratio (SNR) conditions. …”
    Get full text
    Article
  16. 416
  17. 417

    TCE-YOLOv5: Lightweight Automatic Driving Object Detection Algorithm Based on YOLOv5 by Han Wang, Zhenwei Yang, Qiaoshou Liu, Qiang Zhang, Honggang Wang

    Published 2025-05-01
    “…Finally, the EIOU loss function is introduced to measure the overlap between the predicted box and the real box more accurately and improve the detection accuracy. …”
    Get full text
    Article
  18. 418

    YOLOv8n-DDSW: an efficient fish target detection network for dense underwater scenes by Jinwang Yi, Wei Han, Fangfei Lai

    Published 2025-04-01
    “…Therefore, the YOLOv8n-DDSW fish target detection algorithm was proposed in this article to resolve the detection difficulties resulting from fish occlusion, deformation and detail loss in complex intensive aquaculture scenarios. (1) The C2f-deformable convolutional network (DCN) module is proposed to take the place of the C2f module in the YOLOv8n backbone to raise the detection accuracy of irregular fish targets. (2) The dual-pooling squeeze-and-excitation (DPSE) attention mechanism is put forward and integrated into the YOLOv8n neck network to reinforce the features of the visible parts of the occluded fish target. (3) Small detection is introduced to make the network more capable of sensing small targets and improving recall. (4) Wise intersection over union (IOU) rather than the original loss function is used for improving the bounding box regression performance of the network. …”
    Get full text
    Article
  19. 419
  20. 420