-
441
Repeat-induced point mutations driving Parastagonospora nodorum genomic diversity are balanced by selection against non-synonymous mutations
Published 2024-12-01“…Effector predictions identified 186 candidate secreted predicted effector proteins (CSEPs), 69 of which had functional annotations and included confirmed effectors. …”
Get full text
Article -
442
Deep learning vulnerability detection method based on optimized inter-procedural semantics of programs
Published 2023-12-01“…In recent years, software vulnerabilities have been causing a multitude of security incidents, and the early discovery and patching of vulnerabilities can effectively reduce losses.Traditional rule-based vulnerability detection methods, relying upon rules defined by experts, suffer from a high false negative rate.Deep learning-based methods have the capability to automatically learn potential features of vulnerable programs.However, as software complexity increases, the precision of these methods decreases.On one hand, current methods mostly operate at the function level, thus unable to handle inter-procedural vulnerability samples.On the other hand, models such as BGRU and BLSTM exhibit performance degradation when confronted with long input sequences, and are not adept at capturing long-term dependencies in program statements.To address the aforementioned issues, the existing program slicing method has been optimized, enabling a comprehensive contextual analysis of vulnerabilities triggered across functions through the combination of intra-procedural and inter-procedural slicing.This facilitated the capture of the complete causal relationship of vulnerability triggers.Furthermore, a vulnerability detection task was conducted using a Transformer neural network architecture equipped with a multi-head attention mechanism.This architecture collectively focused on information from different representation subspaces, allowing for the extraction of deep features from nodes.Unlike recurrent neural networks, this approach resolved the issue of information decay and effectively learned the syntax and semantic information of the source program.Experimental results demonstrate that this method achieves an F1 score of 73.4% on a real software dataset.Compared to the comparative methods, it shows an improvement of 13.6% to 40.8%.Furthermore, it successfully detects several vulnerabilities in open-source software, confirming its effectiveness and applicability.…”
Get full text
Article -
443
A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites
Published 2025-03-01“…This method compensates for the range difference rather than the target range. In the detection period, we develop two weighting functions, i.e., the Doppler frequency rate (DFR) variance function and smooth spatial filtering function, to extract prominent areas and make efficient detection, respectively. …”
Get full text
Article -
444
Network security traffic detection and legal supervision based on adaptive metric learning algorithm
Published 2025-09-01Get full text
Article -
445
App-DDoS detection method using partial binary tree based SVM algorithm
Published 2018-03-01“…As it ignored the detection of ramp-up and pulsing type of application layer DDoS (App-DDoS) attacks in existing flow-based App-DDoS detection methods,an effective detection method for multi-type App-DDoS was proposed.Firstly,in order to fast count the number of HTTP GET for users and further support the calculation of feature parameters applied in detection method,the indexes of source IP address in multiple time windows were constructed by the approach of Hash function.Then the feature parameters by combining SVM classifiers with the structure of partial binary tree were trained hierarchically,and the App-DDoS detection method was proposed with the idea of traversing binary tree and feedback learning to distinguish non-burst normal flow,burst normal flow and multi-type App-DDoS flows.The experimental results show that compared with the conventional SVM-based and naïve-Bayes-based detection methods,the proposed method has more excellent detection performance and can distinguish specific App-DDoS types through subdividing attack types and training detection model layer by layer.…”
Get full text
Article -
446
FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image
Published 2025-06-01“…Heterogeneous Synthetic Aperture Radar (SAR) image object detection task with inconsistent joint probability distributions is occurring more and more frequently in practical applications. …”
Get full text
Article -
447
Enhanced skill optimization algorithm: Solution to the stochastic reactive power dispatch framework with optimal inclusion of renewable resources using large‐scale network
Published 2024-12-01“…Nowadays, thermal generators are no longer utilized and renewable resources (RERs) have been integrated owing to their marvellous benefits. …”
Get full text
Article -
448
-
449
-
450
-
451
Utilizing Photothermal Effect Enhances Photocatalytic Water Splitting Coupled with Selective Benzyl Alcohol Oxidation over Schottky Junctions
Published 2025-07-01“…Herein, WC quantum dots decorated defective ZnIn2S4 nanosheets (DZIS/WCQDs) dual‐functional photocatalysts are fabricated. Its unique Schottky junctions and photothermal effect significantly promote the separation and transport efficiency of photogenerated carriers, as well as achieving synergistic enhancement of photocatalytic water splitting coupled with selective oxidation of benzyl alcohol (BA). …”
Get full text
Article -
452
Genetic Evaluation of Resilience Indicators in Holstein Cows
Published 2025-02-01Get full text
Article -
453
YOLOv9-GDV: A Power Pylon Detection Model for Remote Sensing Images
Published 2025-06-01“…Finally, the Variable Minimum Point Distance Intersection over Union (VMPDIoU) loss is proposed to optimize the model’s loss function. This method employs variable input parameters to directly calculate key point distances between predicted and ground-truth boxes, more accurately reflecting positional differences between detection results and reference targets, thus effectively improving the model’s mean Average Precision (mAP). …”
Get full text
Article -
454
The proteome of circulating extracellular vesicles and their functional effect on platelets vary with the isolation method
Published 2025-07-01“…Abstract Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication and serve as a source of biomarkers in several pathologies. In this study, we aimed to characterize plasma-derived EVs isolated by ultracentrifugation (UC) or size exclusion chromatography (SEC) to define the best method for proteomic and functional studies. …”
Get full text
Article -
455
Construction of Evaluation Model for Soil and Water Conservation Function of Vegetation at Community Scale
Published 2022-02-01Get full text
Article -
456
Kriging-Based Variable Screening Method for Aircraft Optimization Problems with Expensive Functions
Published 2025-06-01“…The computational complexity of airfoil optimization for aircraft wing designs typically involves high-dimensional parameter spaces defined by geometric variables, where each Computational Fluid Dynamics (CFD) simulation cycle may require significant processing resources. Therefore, performing variable selection to identify influential inputs becomes crucial for minimizing the number of necessary model evaluations, particularly when dealing with complex systems exhibiting nonlinear and poorly understood input–output relationships. …”
Get full text
Article -
457
DETECTIVE STORY: TO THE PROBLEM OF VARIABILITY OF THE MAIN EVENT AND CHARACTERS (BY THE CASE OF A. SARAKHOV’S STORIES)
Published 2019-06-01“…The functionality of stereotypes of perception and «memory of the genre» is briefly presented, which manifests itself in the history of understanding a domestic detective story as a constant appeal to the foreign sources of the genre. …”
Get full text
Article -
458
Whole-Genome Sequencing Identifies Functional Genes for Environmental Adaptability in Chinese Geese
Published 2025-05-01Get full text
Article -
459
-
460
Self-Powered Microsystem for Ultra-Fast Crash Detection via Prestressed Triboelectric Sensing
Published 2025-01-01“…We further developed a self-powered, compact (<4.5 cm3) microsystem that integrates the shock sensor, a signal processing module, airbag triggering circuitry, and a high-g-resistant supercapacitor as a backup power source. The microsystem achieves ultra-fast shock detection and airbag activation with a delay of less than 0.2 ms. …”
Get full text
Article