-
341
SSB: Smart Contract Security Detection Tool Suitable for Industrial Control Scenarios
Published 2025-07-01“…The framework’s ability to model industrial invariants—covering security, functionality, consistency, time-related, and resource consumption aspects—provides a robust mechanism to prevent critical errors like unauthorized access or premature equipment operation. …”
Get full text
Article -
342
Portable cotton swab biosensor for rapid naked-eye detection of Helicobacter pylori
Published 2025-09-01“…These findings support the biosensor's utility as a point-of-care diagnostic tool in low-resource settings for the early detection and surveillance of H. pylori infections.…”
Get full text
Article -
343
Gold nanobiosensors and Machine Learning: Pioneering breakthroughs in precision breast cancer detection
Published 2024-12-01“…These sensors take advantage of the unique optical and electric properties that gold nanoparticles have, enabling them to achieve an accurate molecular level of detection. Gold nanobiosensors have been significantly developed through innovations like signal amplification and surface functionalization, integrated with the use of advanced imaging techniques. …”
Get full text
Article -
344
-
345
Automatic Recognition of Authors Identity in Persian based on Systemic Functional Grammar
Published 2024-09-01“…First, a corpus composed of documents written by seven contemporary Iranian authors was collected. Second, a list of function words was extracted from the corpus. Moreover, conjunction, modality and comment adjunct system networks were applied to form a lexicon using linguistics resources. …”
Get full text
Article -
346
-
347
Deep learning vulnerability detection method based on optimized inter-procedural semantics of programs
Published 2023-12-01“…In recent years, software vulnerabilities have been causing a multitude of security incidents, and the early discovery and patching of vulnerabilities can effectively reduce losses.Traditional rule-based vulnerability detection methods, relying upon rules defined by experts, suffer from a high false negative rate.Deep learning-based methods have the capability to automatically learn potential features of vulnerable programs.However, as software complexity increases, the precision of these methods decreases.On one hand, current methods mostly operate at the function level, thus unable to handle inter-procedural vulnerability samples.On the other hand, models such as BGRU and BLSTM exhibit performance degradation when confronted with long input sequences, and are not adept at capturing long-term dependencies in program statements.To address the aforementioned issues, the existing program slicing method has been optimized, enabling a comprehensive contextual analysis of vulnerabilities triggered across functions through the combination of intra-procedural and inter-procedural slicing.This facilitated the capture of the complete causal relationship of vulnerability triggers.Furthermore, a vulnerability detection task was conducted using a Transformer neural network architecture equipped with a multi-head attention mechanism.This architecture collectively focused on information from different representation subspaces, allowing for the extraction of deep features from nodes.Unlike recurrent neural networks, this approach resolved the issue of information decay and effectively learned the syntax and semantic information of the source program.Experimental results demonstrate that this method achieves an F1 score of 73.4% on a real software dataset.Compared to the comparative methods, it shows an improvement of 13.6% to 40.8%.Furthermore, it successfully detects several vulnerabilities in open-source software, confirming its effectiveness and applicability.…”
Get full text
Article -
348
Surface Defect Detection for Small Samples of Particleboard Based on Improved Proximal Policy Optimization
Published 2025-04-01“…The method integrates the variable action space and the composite reward function and achieves the balanced optimization of different types of defect detection performance by adjusting the scaling and translation amplitude of the detection region. …”
Get full text
Article -
349
A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites
Published 2025-03-01“…This method compensates for the range difference rather than the target range. In the detection period, we develop two weighting functions, i.e., the Doppler frequency rate (DFR) variance function and smooth spatial filtering function, to extract prominent areas and make efficient detection, respectively. …”
Get full text
Article -
350
Network security traffic detection and legal supervision based on adaptive metric learning algorithm
Published 2025-09-01Get full text
Article -
351
App-DDoS detection method using partial binary tree based SVM algorithm
Published 2018-03-01“…As it ignored the detection of ramp-up and pulsing type of application layer DDoS (App-DDoS) attacks in existing flow-based App-DDoS detection methods,an effective detection method for multi-type App-DDoS was proposed.Firstly,in order to fast count the number of HTTP GET for users and further support the calculation of feature parameters applied in detection method,the indexes of source IP address in multiple time windows were constructed by the approach of Hash function.Then the feature parameters by combining SVM classifiers with the structure of partial binary tree were trained hierarchically,and the App-DDoS detection method was proposed with the idea of traversing binary tree and feedback learning to distinguish non-burst normal flow,burst normal flow and multi-type App-DDoS flows.The experimental results show that compared with the conventional SVM-based and naïve-Bayes-based detection methods,the proposed method has more excellent detection performance and can distinguish specific App-DDoS types through subdividing attack types and training detection model layer by layer.…”
Get full text
Article -
352
FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image
Published 2025-06-01“…Heterogeneous Synthetic Aperture Radar (SAR) image object detection task with inconsistent joint probability distributions is occurring more and more frequently in practical applications. …”
Get full text
Article -
353
MSSA: multi-stage semantic-aware neural network for binary code similarity detection
Published 2025-01-01“…Binary code similarity detection (BCSD) aims to identify whether a pair of binary code snippets is similar, which is widely used for tasks such as malware analysis, patch analysis, and clone detection. …”
Get full text
Article -
354
-
355
-
356
A Lightweight Network for UAV Multi-Scale Feature Fusion-Based Object Detection
Published 2025-03-01“…To tackle the issues of small target sizes, missed detections, and false alarms in aerial drone imagery, alongside the constraints posed by limited hardware resources during model deployment, a streamlined object detection approach is proposed to enhance the performance of YOLOv8s. …”
Get full text
Article -
357
A lightweight UAV target detection algorithm based on improved YOLOv8s model
Published 2025-05-01“…Furthermore, the original loss function is replaced with SIoU to enhance detection accuracy. …”
Get full text
Article -
358
Research on underwater disease target detection method of inland waterway based on deep learning
Published 2025-04-01“…Abstract Aiming at the problems of low detection accuracy and poor generalization ability of underwater disease targets in inland waterways, an underwater disease target detection algorithm for inland waterways based on improved YOLOv5 is designed, which is denoted as YOLOv5-GBCE. …”
Get full text
Article -
359
Lightweight and Accurate YOLOv7-Based Ensembles With Knowledge Distillation for Urinary Sediment Detection
Published 2025-01-01“…Urine sediment analysis plays an important role in evaluating kidney function. In addition to improving detection accuracy, reducing model size is also a key challenge, especially when considering deployment on medical devices where computational resources are limited. …”
Get full text
Article -
360
Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
Published 2025-06-01“…The developed algorithms for training NN architectures improved the accuracy of drone detection by achieving the global extremum of the loss function in fewer epochs using positive–negative pulse-based optimization algorithms. …”
Get full text
Article