Showing 461 - 480 results of 2,295 for search '(( resource detection function ) OR (( source OR sources) selection function ))', query time: 0.32s Refine Results
  1. 461

    From fish to fiber: 3D-nanoprinted optical neuromast for multi-integrated underwater detection by Liangye Li, Xuhao Fan, Geng Chen, Yueqi Liu, Fujun Zhang, Zhuolin Chen, Zhi Zhang, Wangyang Xu, Shixiong Zhang, Yuncheng Liu, Zongjing Li, Hui Gao, Zhijun Yan, Wei Xiong, Qizhen Sun

    Published 2025-08-01
    “…Abstract Fish possess high sensitivity to acoustic, vibrational, and hydrodynamic stimuli through unique sensing cells, providing unparalleled paradigms for developing underwater detection methods. However, artificial perception devices face challenges in replicating comparable sensitivity and multi-dimensional integration of fish in function and scale. …”
    Get full text
    Article
  2. 462
  3. 463

    Enhancing Human Detection in Occlusion-Heavy Disaster Scenarios: A Visibility-Enhanced DINO (VE-DINO) Model with Reassembled Occlusion Dataset by Zi-An Zhao, Shidan Wang, Min-Xin Chen, Ye-Jiao Mao, Andy Chi-Ho Chan, Derek Ka-Hei Lai, Duo Wai-Chi Wong, James Chung-Wai Cheung

    Published 2025-01-01
    “…VE-DINO enhances detection accuracy by incorporating body part key point information and employing a specialized loss function. …”
    Get full text
    Article
  4. 464

    Uncovering functional deterioration in the rhizosphere microbiome associated with post-green revolution wheat cultivars by Monique E. Smith, Vanessa N. Kavamura, David Hughes, Rodrigo Mendes, George Lund, Ian Clark, Tim H. Mauchline

    Published 2025-06-01
    “…Of the 113 functional genes that were differentially abundant between heritage and modern cultivars, 95% were depleted in modern cultivars and 65% of differentially abundant reads best mapped to genes involved in staurosporine biosynthesis (antibiotic product), plant cell wall degradation (microbial mediation of plant root architecture, overwintering energy source for microbes) and sphingolipid metabolism (signal bioactive molecules). …”
    Get full text
    Article
  5. 465
  6. 466

    Lightweight coal miners and manned vehicles detection model based on deep learning and model compression techniques: A case study of coal mines in Guizhou region by Beijing XIE, Heng LI, Zheng LUAN, Zhen LEI, Xiaoxu LI, Zhuo LI

    Published 2025-02-01
    “…Compared to various lightweight architectures and advanced detection models, this method demonstrates excellent accuracy, lower computational costs, and better real-time performance, providing a feasible coal mine pedestrian-vehicle detection method for resource-constrained coal mine scenarios, meeting the deployment requirements of coal mine video surveillance and enabling real-time alerts for intelligent inspection of coal mine pedestrian-vehicles.…”
    Get full text
    Article
  7. 467

    Energy-Efficiency using Critical Nodes Detection Problem in Industrial Wireless Sensor Networks (IWSNs) by Karima MOULEY, Mohamed Amin TAHRAOUI, Abdelaziz KELLA

    Published 2025-03-01
    “…Experiments simulation validates our proposed approach, approving its efficiency in reducing significant energy consumption while preserving connectivity and functionality for industrial systems. Furthermore, the results highlight the potential of using critical node analysis to support sustainable and efficient operations in resource-constrained industrial environments. …”
    Get full text
    Article
  8. 468
  9. 469

    Simple Single-Person Fall Detection Model Using 3D Pose Estimation Mechanisms by Jinmo Yang, R. Young Chul Kim

    Published 2024-01-01
    “…Although various technologies with wearables and vision systems that utilize artificial intelligence (AI) have been developed to detect falls, many AI models are complex and resource-intensive. …”
    Get full text
    Article
  10. 470

    Enhanced Intrusion Detection in In-Vehicle Networks Using Advanced Feature Fusion and Stacking-Enriched Learning by Ali Altalbe

    Published 2024-01-01
    “…To address this problem, machine learning (ML) based intrusion detection systems (IDSs) have been proposed. However, existing IDSs suffer from low detection accuracy, limited real-time response, and high resource requirements. …”
    Get full text
    Article
  11. 471

    F-OSFA: A Fog Level Generalizable Solution for Zero-Day DDOS Attacks Detection by Muhammad Rashid Minhas, Qaisar M. Shafi, Shoab Ahmed Khan, Tahir Ahmad, Subhan Ullah, Attaullah Buriro, Muhammad Azfar Yaqub

    Published 2025-01-01
    “…The third component is a signature-based resource usage analyzer to counter attacks mimicking normal traffic. …”
    Get full text
    Article
  12. 472

    Estimating Leaf Chlorophyll Fluorescence Parameters Using Partial Least Squares Regression with Fractional-Order Derivative Spectra and Effective Feature Selection by Jie Zhuang, Quan Wang

    Published 2025-02-01
    “…Chlorophyll fluorescence (ChlF) parameters serve as non-destructive indicators of vegetation photosynthetic function and are widely used as key input parameters in photosynthesis–fluorescence models. …”
    Get full text
    Article
  13. 473
  14. 474

    DECISION TREE WITH HILL CLIMBING ALGORITHM BASED SPECTRUM HOLE DETECTION IN COGNITIVE RADIO NETWORK by N Suganthi, R Meenakshi, A Sairam, M Parvathi

    Published 2025-06-01
    “…The approach integrates a Decision Tree (DT) algorithm for rapid initial classification of Primary User (PU) activity, followed by a Hill Climbing (HC) optimization algorithm that fine-tunes the detection based on a fitness function. Entropy and throughput metrics are employed as decision conditions at each sensing channel, enhancing uncertainty measurement and maintaining detection robustness under low Signal-to-Noise Ratio (SNR) conditions. …”
    Get full text
    Article
  15. 475
  16. 476

    TCE-YOLOv5: Lightweight Automatic Driving Object Detection Algorithm Based on YOLOv5 by Han Wang, Zhenwei Yang, Qiaoshou Liu, Qiang Zhang, Honggang Wang

    Published 2025-05-01
    “…Finally, the EIOU loss function is introduced to measure the overlap between the predicted box and the real box more accurately and improve the detection accuracy. …”
    Get full text
    Article
  17. 477

    YOLOv8n-DDSW: an efficient fish target detection network for dense underwater scenes by Jinwang Yi, Wei Han, Fangfei Lai

    Published 2025-04-01
    “…Therefore, the YOLOv8n-DDSW fish target detection algorithm was proposed in this article to resolve the detection difficulties resulting from fish occlusion, deformation and detail loss in complex intensive aquaculture scenarios. (1) The C2f-deformable convolutional network (DCN) module is proposed to take the place of the C2f module in the YOLOv8n backbone to raise the detection accuracy of irregular fish targets. (2) The dual-pooling squeeze-and-excitation (DPSE) attention mechanism is put forward and integrated into the YOLOv8n neck network to reinforce the features of the visible parts of the occluded fish target. (3) Small detection is introduced to make the network more capable of sensing small targets and improving recall. (4) Wise intersection over union (IOU) rather than the original loss function is used for improving the bounding box regression performance of the network. …”
    Get full text
    Article
  18. 478
  19. 479
  20. 480