Search alternatives:
main research » pain research (Expand Search)
fast » fact (Expand Search)
Showing 141 - 160 results of 166 for search '(( main research random tree algorithm ) OR (( fast OR east) research random three algorithm ))', query time: 0.13s Refine Results
  1. 141
  2. 142
  3. 143

    Hyperspectral estimation of chlorophyll density in winter wheat using fractional-order derivative combined with machine learning by Chenbo Yang, Chenbo Yang, Meichen Feng, Juan Bai, Hui Sun, Rutian Bi, Lifang Song, Chao Wang, Yu Zhao, Wude Yang, Lujie Xiao, Meijun Zhang, Xiaoyan Song

    Published 2025-01-01
    “…Hyperspectral monitoring models for winter wheat ChD were constructed using 8 machine learning algorithms, including partial least squares regression, support vector regression, multi-layer perceptron regression, random forest regression, extra-trees regression (ETsR), decision tree regression, K-nearest neighbors regression, and gaussian process regression, based on the full spectrum band and the band selected by competitive adaptive reweighted sampling (CARS). …”
    Get full text
    Article
  4. 144
  5. 145
  6. 146
  7. 147

    Development and Validation of DIANA (Diabetes Novel Subgroup Assessment tool): A web-based precision medicine tool to determine type 2 diabetes endotype membership and predict indi... by Viswanathan Baskar, Mani Arun Vignesh, Sumanth C Raman, Arun Jijo, Bhavadharini Balaji, Nico Steckhan, Lena Maria Klara Roth, Moneeza K Siddiqui, Saravanan Jebarani, Ranjit Unnikrishnan, Viswanathan Mohan, Ranjit Mohan Anjana

    Published 2025-08-01
    “…Its performance was compared with an algorithm determined based on conditional pre-determined cut-offs and weights for each clinical feature [age at diagnosis, BMI, waist, HbA1c, Serum Triglycerides, HDL-Cholesterol, (C-peptide fasting, C-peptide stimulated) - optional. …”
    Get full text
    Article
  8. 148
  9. 149
  10. 150
  11. 151

    AI-Driven Predictive Maintenance for Workforce and Service Optimization in the Automotive Sector by Şenda Yıldırım, Ahmet Deniz Yücekaya, Mustafa Hekimoğlu, Meltem Ucal, Mehmet Nafiz Aydin, İrem Kalafat

    Published 2025-06-01
    “…Additionally, this predictive approach supports workforce planning and scheduling within after-sales service centers, aligning with AI-driven labor optimization frameworks such as those explored in the AI4LABOUR project. Four algorithms in machine learning—Decision Tree, Random Forest, LightGBM (LGBM), and Extreme Gradient Boosting (XGBoost)—were assessed for their forecasting capabilities. …”
    Get full text
    Article
  12. 152

    Google Earth Engine-based Mangrove Mapping and Change Detections for Sustainable Development in Tien Yen District, Quang Ninh Province, Vietnam by M. H. Nguyen, N. T. Nguyen, G. Y. I. Ryadi, M. V. Nguyen, T. L. Duong, C.-H. Lin, T. B. Nguyen

    Published 2024-11-01
    “…Four supervised classification algorithms, including Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes classifier, and Classification and Regression Trees (CART) have been implemented on GEE platform to select the best algorithm to produce spatial-temporal mangrove maps, then change detection of mangroves is performed. …”
    Get full text
    Article
  13. 153
  14. 154
  15. 155

    Habitat suitability modeling to improve conservation strategy of two highly-grazed endemic plant species in saint Catherine Protectorate, Egypt by Mohamed M. El-Khalafy, Eman T. El-Kenany, Alshymaa Z. Al-Mokadem, Salma K. Shaltout, Ahmed R. Mahmoud

    Published 2025-04-01
    “…In our analysis, we included the incorporation of bioclimatic variables into the SDM modeling process using four main algorithms: generalized linear model (GLM), Random Forest (RF), Boosted Regression Trees (BRT), and Support Vector Machines (SVM) in an ensemble model. …”
    Get full text
    Article
  16. 156
  17. 157
  18. 158

    Cerebrospinal Fluid Leakage Combined with Blood Biomarkers Predicts Poor Wound Healing After Posterior Lumbar Spinal Fusion: A Machine Learning Analysis by Pang Z, Ou Y, Liang J, Huang S, Chen J, Huang S, Wei Q, Liu Y, Qin H, Chen Y

    Published 2024-11-01
    “…The data was divided into test and validation groups in a 7:3 ratio. In the test group, logistic regression analysis, support vector machine (SVM), random forest (RF), decision tree (DT), XGboost, Naïve Bayes (NB), k-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) were used to identify specific variables. …”
    Get full text
    Article
  19. 159
  20. 160