Search alternatives:
main research » pain research (Expand Search)
Showing 21 - 40 results of 138 for search '(( main research random tree algorithm ) OR (( east OR fact) research random three algorithm ))', query time: 0.41s Refine Results
  1. 21
  2. 22
  3. 23
  4. 24

    Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering by Bo Xu, Chunjiang Zhao, Guijun Yang, Yuan Zhang, Changbin Liu, Haikuan Feng, Xiaodong Yang, Hao Yang

    Published 2025-01-01
    “…Subsequently, we harnessed the TreeQSM algorithm, which is custom-designed for extracting tree topological structures, to extract 11 archetypal structural phenotypic parameters of the maize tassels. …”
    Get full text
    Article
  5. 25
  6. 26
  7. 27
  8. 28

    Prediction of Optimum Operating Parameters to Enhance the Performance of PEMFC Using Machine Learning Algorithms by Arunadevi M, Karthikeyan B, Anirudh Shrihari, Saravanan S, Sundararaju K, R Palanisamy, Mohamed Awad, Mohamed Metwally Mahmoud, Daniel Eutyche Mbadjoun Wapet, Abdulrahman Al Ayidh, Hany S. Hussein, Mahmoud M. Hussein, Ahmed I. Omar

    Published 2025-03-01
    “…Different MLAs are modelled to explore the PEMFC performance and results proved that gradient boosting regression provides better predictions compared to other algorithms such as decision tree regressor, support vector machine regressor, and random forest regression.…”
    Get full text
    Article
  9. 29

    Leveraging mixed-effects regression trees for the analysis of high-dimensional longitudinal data to identify the low and high-risk subgroups: simulation study with application to g... by Mina Jahangiri, Anoshirvan Kazemnejad, Keith S. Goldfeld, Maryam S. Daneshpour, Mehdi Momen, Shayan Mostafaei, Davood Khalili, Mahdi Akbarzadeh

    Published 2025-03-01
    “…Previous studies have shown that this model can be sensitive to parametric assumptions and provides less predictive performance than non-parametric methods such as random effects-expectation maximization (RE-EM) and unbiased RE-EM regression tree algorithms. …”
    Get full text
    Article
  10. 30

    Model Klasifikasi Machine Learning untuk Prediksi Ketepatan Penempatan Karir by Hendri Mahmud Nawawi, Agung Baitul Hikmah, Ali Mustopa, Ganda Wijaya

    Published 2024-03-01
    “…The complexity of the job market requires individuals and organizations to understand the trends and needs of the world of work. One of the main challenges is the right career placement. That is becoming increasingly popular is the use of Machine Learning  algorithms in the decision-making process. …”
    Get full text
    Article
  11. 31

    Proposal for Using AI to Assess Clinical Data Integrity and Generate Metadata: Algorithm Development and Validation by Caroline Bönisch, Christian Schmidt, Dorothea Kesztyüs, Hans A Kestler, Tibor Kesztyüs

    Published 2025-06-01
    “…Logistic regression, k-nearest neighbors, a naive bayes classifier, a decision tree classifier, a random forest classifier, extreme gradient boosting (XGB), and support vector machines (SVM) were selected as machine learning algorithms. …”
    Get full text
    Article
  12. 32

    Integrated transportation system planning with gravitational search algorithm approach based on fuzzy mutant controller by Alireza Hosseinzadeh Kashani, Seyed Ahmad Shayannia, Mohammad Mehdi Movahedi, Soheila Sardar

    Published 2025-03-01
    “…In these relations, <strong>3r </strong>is a uniform random variable in the interval [1,0], which is used to create the random property of the speed of the particle population optimization algorithm and the acceleration of the gravitational search algorithm in the gravitational particle population algorithm, and <strong>3C </strong>and <strong>4C</strong> are two constants to determine the degree of the speed of the particle population optimizer algorithm and the acceleration of the gravitational search algorithm in the gravitational particle population algorithm the values of which are considered 3C and 4C. …”
    Get full text
    Article
  13. 33
  14. 34
  15. 35
  16. 36
  17. 37
  18. 38
  19. 39
  20. 40

    Proposing a framework for body mass prediction with point clouds: A study applied in typical swine pen environments by Gabriel Pagin, Luciane Silva Martello, Rubens André Tabile, Rafael Vieira de Sousa

    Published 2025-12-01
    “…Challenges persist in implementing these techniques in pens with a large number of animals, especially in extracting physical body characteristics from images in a production environment. In this context, the main objective of this research is to investigate a novel framework comprising effective algorithms for feature extraction, attribute selection, hyperparameter optimization, and prediction modelling, using point clouds collected from production animals (growing and finishing pigs). …”
    Get full text
    Article