Showing 821 - 840 results of 881 for search '(( improved model optimization algorithm ) OR ( improve most optimization algorithm ))~', query time: 0.32s Refine Results
  1. 821

    Artificial Intelligence-Based Prediction of Bloodstream Infections Using Standard Hematological and Biochemical Markers by Ferhat DEMİRCİ, Murat AKŞİT, Aylin DEMİRCİ

    Published 2025-08-01
    “…The model’s strong performance and interpretability suggest its potential application in clinical decision support systems to improve diagnostic stewardship, reduce unnecessary cultures, and optimize resource use in suspected BSI cases.…”
    Get full text
    Article
  2. 822

    Medical Device Failure Predictions Through AI-Driven Analysis of Multimodal Maintenance Records by Noorul Husna Abd Rahman, Khairunnisa Hasikin, Nasrul Anuar Abd Razak, Ayman Khallel Al-Ani, D. Jerline Sheebha Anni, Prabu Mohandas

    Published 2023-01-01
    “…Then, four machine learning algorithms and three deep learning networks are evaluated to determine the best predictive model. …”
    Get full text
    Article
  3. 823

    Digital Land Suitability Assessment for Irrigated Cultivation of Some Agricultural Crops Using Machine Learning Approaches (Case Study: Qazvin-Abyek) by F. Jannati, F. Sarmadian

    Published 2024-09-01
    “…The utilization of modern mapping techniques such as digital soil mapping and machine learning algorithms can significantly improve the accuracy of land suitability assessment and crop performance prediction. …”
    Get full text
    Article
  4. 824

    Early Warning of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Multi-Omics Signature: A Machine Learning-Based Retrospective Study by Ke Z, Shen L, Shao J

    Published 2024-12-01
    “…The AUC of GLRM was 0.818 (95% CI: 0.757~0.879), significantly lower than that of RFM’s AUC 0.893 (95% CI: 0.836~0.950).Conclusion: The prediction models based on machine learning (ML) algorithms and multiomics have shown good performance in predicting ALN metastasis, and RFM shows greater advantages compared to traditional GLRM. …”
    Get full text
    Article
  5. 825

    Artificial Intelligence and Machine Learning Approaches for Target-Based Drug Discovery: A Focus on GPCR-Ligand Interactions by M. O. Otun

    Published 2025-03-01
    “…This review explores the integration of AI and ML techniques in GPCR-targeted drug discovery, highlighting their potential to accelerate lead identification, optimize ligand binding predictions, and improve structure-activity relationship modeling. …”
    Get full text
    Article
  6. 826

    A deep contrastive learning-based image retrieval system for automatic detection of infectious cattle diseases by Veerayuth Kittichai, Morakot Kaewthamasorn, Apinya Arnuphaprasert, Rangsan Jomtarak, Kaung Myat Naing, Teerawat Tongloy, Santhad Chuwongin, Siridech Boonsang

    Published 2025-01-01
    “…The model’s performance was also improved by a fine-tuned procedure between k-nearest neighbor and its normalized distance of each data point, including precision of 0.833 ± 0.134, specificity of 0.930 ± 0.054, recall of 0.838 ± 0.118, and accuracy of 0.915 ± 0.025, respectively. …”
    Get full text
    Article
  7. 827

    Machine Learning Applications in Gray, Blue, and Green Hydrogen Production: A Comprehensive Review by Xuejia Du, Shihui Gao, Gang Yang

    Published 2025-05-01
    “…ML algorithms such as artificial neural networks (ANNs), random forest (RF), and gradient boosting regression (GBR) have been widely applied to predict hydrogen yield, optimize operational conditions, reduce emissions, and improve process efficiency. …”
    Get full text
    Article
  8. 828

    Machine learning-based integration develops relapse related signature for predicting prognosis and indicating immune microenvironment infiltration in breast cancer by Junyi Li, Shixin Li, Dongpo Zhang, Yibing Zhu, Yue Wang, Xiaoxiao Xing, Juefei Mo, Yong Zhang, Daixiang Liao, Jun Li

    Published 2025-06-01
    “…To address these limitations, this study systematically analyzed RNA-seq high-throughput data and combined 10 machine learning algorithms to construct 117 models. The optimal algorithm combination, StepCox[both] and ridge regression, was identified, and an immune-related gene signature (IRGS) composed of 12 genes was developed. …”
    Get full text
    Article
  9. 829

    Implications of machine learning techniques for prediction of motor health disorders in Saudi Arabia by Ehab M. Almetwally, I. Elbatal, Mohammed Elgarhy, Amr R. Kamel

    Published 2025-08-01
    “…The RF technique achieves the largest area under the curve, and the RF technique is the most effective of all ML algorithms, according to the results of the applied ML algorithms. …”
    Get full text
    Article
  10. 830

    Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study by Emanuele Frassini, Teddy S. Vijfvinkel, Rick M. Butler, Maarten van der Elst, Benno H. W. Hendriks, John J. van den Dobbelsteen

    Published 2025-12-01
    “…Future research should validate these findings across different procedural contexts and explore ways to optimize training times without losing accuracy. Integrating these models into clinical scheduling systems could improve efficiency in cath labs. …”
    Get full text
    Article
  11. 831
  12. 832

    Automated Body Condition Scoring in Dairy Cows Using 2D Imaging and Deep Learning by Reagan Lewis, Teun Kostermans, Jan Wilhelm Brovold, Talha Laique, Marko Ocepek

    Published 2025-07-01
    “…The study recommends improvements in algorithmic feature extraction, dataset expansion, and multi-view integration to enhance accuracy. …”
    Get full text
    Article
  13. 833

    The artificial intelligence revolution in gastric cancer management: clinical applications by Runze Li, Jingfan Li, Yuman Wang, Xiaoyu Liu, Weichao Xu, Runxue Sun, Binqing Xue, Xinqian Zhang, Yikun Ai, Yanru Du, Jianming Jiang

    Published 2025-03-01
    “…Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching. …”
    Get full text
    Article
  14. 834
  15. 835

    Machine learning-based prediction of carotid intima–media thickness progression: a three-year prospective cohort study by An Zhou, Kui Chen, Kui Chen, Yonghui Wei, Qu Ye, Qu Ye, Yuanming Xiao, Rong Shi, Jiangang Wang, Wei-Dong Li

    Published 2025-06-01
    “…Baseline CIMT, absolute monocyte count, sex, age, and LDL-C were identified as the most influential predictors. After Platt scaling, the calibration improved significantly across all the models. …”
    Get full text
    Article
  16. 836

    Real-time mobile broadband quality of service prediction using AI-driven customer-centric approach by Ayokunle A. Akinlabi, Folasade M. Dahunsi, Jide J. Popoola, Lawrence B. Okegbemi

    Published 2025-06-01
    “…Three (3) classification algorithms including Random Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) were trained using the QoS dataset and then evaluated in order to determine the most effective model based on certain evaluation metrics – accuracy, precision, F1-Score and recall. …”
    Get full text
    Article
  17. 837

    A comprehensive review of data analytics and storage methods in geothermal energy operations by Ali Basem, Ahmed Kateb Jumaah Al-Nussairi, Dana Mohammad Khidhir, Narinderjit Singh Sawaran Singh, Mohammadreza Baghoolizadeh, Mohammad Ali Fazilati, Soheil Salahshour, S. Mohammad Sajadi, Ali Mohammadi Hasanabad

    Published 2025-09-01
    “…It was shown that artificial neural networks were the most common kind of trained model, while several other models were often used as benchmarks for performance. …”
    Get full text
    Article
  18. 838

    A Lightweight YOLO-Based Architecture for Apple Detection on Embedded Systems by Juan Carlos Olguín-Rojas, Juan Irving Vasquez, Gilberto de Jesús López-Canteñs, Juan Carlos Herrera-Lozada, Canek Mota-Delfin

    Published 2025-04-01
    “…In Mexico, the manual detection of damaged apples has led to inconsistencies in product quality, a problem that can be addressed by integrating vision systems with machine learning algorithms. The YOLO (You Only Look Once) neural network has significantly improved fruit detection through image processing and has automated several related tasks. …”
    Get full text
    Article
  19. 839

    ‘Machine Learning’ multiclassification for stage diagnosis of Alzheimer’s disease utilizing augmented blood gene expression and feature fusion by Manash Sarma, Subarna Chatterjee

    Published 2025-06-01
    “…Additionally, the ROC AUC scores were improved to 0.90, 0.85, and 0.89. Conclusion Using machine learning multiclassification techniques on blood gene expression profile data from ADNI and NCBI, we achieved the most promising results to date for diagnosing multiple stages of Alzheimer’s disease. …”
    Get full text
    Article
  20. 840

    Crop yield prediction using machine learning: An extensive and systematic literature review by Sarowar Morshed Shawon, Falguny Barua Ema, Asura Khanom Mahi, Fahima Lokman Niha, H.T. Zubair

    Published 2025-03-01
    “…Also, the most applied machine learning algorithms are Linear Regression (LR), Random Forest (RF), and Gradient Boosting Trees (GBT) whereas the most applied deep learning algorithms are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM). …”
    Get full text
    Article