-
5181
Development and validation of a machine learning-based risk prediction model for stroke-associated pneumonia in older adult hemorrhagic stroke
Published 2025-06-01“…The results indicated that among the four machine learning algorithms (XGBoost, LR, SVM, and Naive Bayes), the LR model demonstrated the best and most stable predictive performance. …”
Get full text
Article -
5182
A radiomics-clinical predictive model for difficult laparoscopic cholecystectomy based on preoperative CT imaging: a retrospective single center study
Published 2025-07-01“…A combination of radiomic and clinical features was selected using the Boruta-LASSO algorithm. Predictive models were constructed using six machine learning algorithms and validated, with model performance evaluated based on the AUC, accuracy, Brier score, and DCA to identify the optimal model. …”
Get full text
Article -
5183
Small Scale Multi-Object Segmentation in Mid-Infrared Image Using the Image Timing Features–Gaussian Mixture Model and Convolutional-UNet
Published 2025-05-01“…The approach integrates the Image Timing Features–Gaussian Mixture Model (ITF-GMM) and Convolutional-UNet (Con-UNet) to improve the accuracy of target detection. …”
Get full text
Article -
5184
Research on Dynamic Performance of Autonomous-rail Rapid Tram
Published 2020-01-01“…Through detailed Simpack dynamic model, the simulation research was carried out to provide guidance for optimization and improvement of vehicle dynamic performance. …”
Get full text
Article -
5185
Research on the prediction of blasting fragmentation in open-pit coal mines based on KPCA-BAS-BP
Published 2024-10-01“…Compared with the unoptimized BP neural network and the BP neural network optimized by the artificial bee colony algorithm (ABC) model, this model has higher prediction accuracy and is more suitable for predicting the blasting block size of open-pit coal mines, it provides a new method for predicting the fragmentation of blasting under the influence of multiple factors, filling the gap in related theoretical research, and has certain practical application value.…”
Get full text
Article -
5186
Enhancing Aerosol Vertical Distribution Retrieval With Combined LSTM and Transformer Model From OCO-2 O2 A-Band Observations
Published 2025-01-01“…Furthermore, a physics-based, information-driven band selection method was developed to simplify input data and reduce complexity. To enhance the algorithm's applicability, the model was applied across the entire African continent and adjacent water bodies. …”
Get full text
Article -
5187
Advanced clustering and transfer learning based approach for rice leaf disease segmentation and classification
Published 2025-07-01“…Also, the tent chaotic particle snow ablation optimizer is added into the learning process in order to improve the learning process and shorten the time of convergence. …”
Get full text
Article -
5188
Detection of Substation Pollution in District Heating and Cooling Systems: A Comprehensive Comparative Analysis of Machine Learning and Artificial Neural Network Models
Published 2024-11-01“…In order to improve the performance of the machine learning models, hyperparameter tuning was performed by Grid Search Optimization method. …”
Get full text
Article -
5189
Multi-Scale Spatiotemporal Feature Enhancement and Recursive Motion Compensation for Satellite Video Geographic Registration
Published 2025-04-01“…Based on the SuperGlue matching algorithm, the method achieves automatic matching of inter-frame image points by introducing the multi-scale dilated attention (MSDA) to enhance the feature extraction and adopting a joint multi-frame optimization strategy (MFMO), designing a recursive motion compensation model (RMCM) to eliminate the cumulative effect of the orbit error and improve the accuracy of the inter-frame image point matching, and using a rational function model to establish the geometrical mapping between the video and the ground points to realize the georeferencing of satellite video. …”
Get full text
Article -
5190
Dealing with the Outlier Problem in Multivariate Linear Regression Analysis Using the Hampel Filter
Published 2025-02-01“…These outliers may occur in the dependent variable or both independent and dependent variables, resulting in large residual values that compromise model reliability. Addressing outliers is essential for improving the accuracy and robustness of regression models. …”
Get full text
Article -
5191
-
5192
The Forecasting Yield of Highland Barley and Wheat by Combining a Crop Model with Different Weather Fusion Methods in the Study of the Northeastern Tibetan Plateau
Published 2025-05-01“…For HB, sequential selection and an improved KNN algorithm were optimal, while for wheat, sequential selection performed best. …”
Get full text
Article -
5193
Enhancing Wind Turbine Efficiency: An Experimental Investigation of a Sensorless Three-Vector Finite Set Predictive Torque Control Approach for PMSG-Based Systems
Published 2025-01-01“…This approach does not require an anemometer, mechanical parameters, or rotor position sensors, making the system simpler, more reliable, and cost-effective. The 3V FS-PTC algorithm enhances control performance by selecting the three most optimal voltage vectors, two active voltage vectors and one zero voltage vector. …”
Get full text
Article -
5194
PolSAR Forest Height Estimation Enhancement With Polarimetric Rotation Domain Features and Multivariate Sensitivity Analysis
Published 2025-01-01“…Then, we propose a Bayesian-optimized ensemble learning algorithm to improve the accuracy of forest height estimation. …”
Get full text
Article -
5195
Detecting Anomalies in Hydraulically Adjusted Servomotors Based on a Multi-Scale One-Dimensional Residual Neural Network and GA-SVDD
Published 2024-08-01“…This model uses a multi-scale one-dimensional residual neural network (M1D_ResNet) for feature extraction and a genetic algorithm (GA)-optimized support vector data description (SVDD). …”
Get full text
Article -
5196
Research on Fault Diagnosis of Traction Power Supply System Based on PSO-LSSVM
Published 2019-05-01“…According to the working principle and characteristics of the train power supply system, the relationship between the fault phenomenon and the origin was analyzed, and the characteristic signals used for fault diagnosis were extracted. A fault diagnosis model based on PSO optimized least squares support vector machine was established, and PCA algorithm was used to extract data characteristics as input of fault diagnosis model, and reduce input dimension. …”
Get full text
Article -
5197
Leveraging machine learning to proactively identify phishing campaigns before they strike
Published 2025-05-01“…These algorithms were chosen for their strong global search capabilities and adaptability to complex datasets, ensuring optimal parameter selection for improved model performance. …”
Get full text
Article -
5198
-
5199
Enhancing phase change thermal energy storage material properties prediction with digital technologies
Published 2025-07-01“…To address these limitations, the integration of digital technologies, such as computational modeling and machine learning (ML), has become increasingly important.MethodsThis paper proposes a hybrid multiscale modeling framework that integrates molecular dynamics (MD) simulations, finite element methods (FEM) from continuum mechanics, and supervised ML algorithms—including deep neural networks and gradient boosting regressors—to enable accurate and efficient prediction of material properties across scales. …”
Get full text
Article -
5200
Development and validation of novel machine learning-based prognostic models and propensity score matching for comparison of surgical approaches in mucinous breast cancer
Published 2025-06-01“…We have successfully developed 6 optimal prognostic models utilizing the XGBoost algorithm to accurately predict the survival of MBC patients. …”
Get full text
Article