Search alternatives:
improve model » improved model (Expand Search)
Showing 1,601 - 1,620 results of 7,642 for search '(( improve most optimization algorithm ) OR ( improve model optimization algorithm ))', query time: 0.21s Refine Results
  1. 1601

    Study on the anti-penetration randomness of metal protective structures based on optimized artificial neural network by Lan Liu, Weidong Chen, Shengzhuo Lu, Yanchun Yu, Mingwu Sun

    Published 2025-05-01
    “…And by adopting the Back Propagation Neural Network optimized by Dynamic Lifecycle Genetic Algorithm (DLGABPNN) as the surrogate model of APRMPS, this paper presents the technical route of DLGABPNN-MCS, the Monte Carlo Simulation with DLGABPNN calculation as repeated sampling tests, to addressing APRMPS. …”
    Get full text
    Article
  2. 1602

    An intelligent attention based deep convoluted learning (IADCL) model for smart healthcare security by J. Maruthupandi, S. Sivakumar, B. Lakshmi Dhevi, S. Prasanna, R. Karpaga Priya, Shitharth Selvarajan

    Published 2025-01-01
    “…Afterwards, optimization in the classification process is done by the SA-HHO algorithm, which provides the optimal weight values. …”
    Get full text
    Article
  3. 1603
  4. 1604

    Predictive Ecological Cooperative Control of Electric Vehicles Platoon on Hilly Roads by Bingbing Li, Weichao Zhuang, Boli Chen, Hao Zhang, Sheng Yu, Jianrun Zhang, Guodong Yin

    Published 2025-03-01
    “…Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories, this strategy employs an approach based on the combination of a long short-term memory network (LSTM) and genetic algorithm (GA) optimization (GA-LSTM) to predict the future speed of the leading vehicle. …”
    Get full text
    Article
  5. 1605

    Gaussian Process Regression Total Nitrogen Prediction Based on Data Decomposition Technology and Several Intelligent Algorithms by WANG Yongshun, CUI Dongwen

    Published 2023-01-01
    “…Total nitrogen (TN) is one of the important indicators to reflect the degree of water pollution and measure the eutrophication status of lakes and reservoirs.To improve the accuracy of TN prediction,based on the empirical wavelet transform (EWT) and wavelet packet transform (WPT) decomposition technology,this paper proposes a Gaussian process regression (GPR) prediction model optimized by osprey optimization algorithm (OOA),rime optimization algorithm (ROA),bald eagle search (BES) and black widow optimization algorithm (BWOA) respectively.Firstly,the TN time series is decomposed into several more regular subsequence components by EWT and WPT respectively.Then,the paper briefly introduces the principles of OOA,ROA,BES,and BWOA algorithms and applies OOA,ROA,BES,and BWOA to optimize GPR hyperparameters.Finally,EWT-OOA-GPR,EWT-ROA-GPR,EWT-BES-GPR,EWT-BWOA-GPR,WPT-OOA-GPR,WPT-ROA-GPR,WPT-BES-GPR,WPT-BWOA-GPR models (EWT-OOA-GPR and other eight models for short) are established to predict the components of TN by the optimized super-parameters.The final prediction results are obtained after reconstruction,and WT-OOA-GPR,WT-ROA-GPR,WT-BES-GPR and WT-BWOA-GPR models based on wavelet transform (WT) are built.Eight models,including EWT-OOA-SVM based on support vector machine (SVM),the paper compares the unoptimized EWT-GPR,WPT-GPR models,and the uncomposed OOA-GPR,ROA-GPR,BES-GPR,and BWOA-GPR models.The models were verified by the monitoring TN concentration time series data of Mudihe Reservoir,an important drinking water source in China,from 2008 to 2022.The results are as follows.① The average absolute percentage error of eight models such as EWT-OOA-GPR for TN prediction is between 0.161% and 0.219%,and the coefficient of determination is 0.999 9,which is superior to other comparison models,with higher prediction accuracy and better generalization ability.② EWT takes into account the advantages of WT and EMD.WPT can decompose low-frequency and high-frequency signals at the same time.Both of them can decompose TN time series data into more regular modal components,significantly improving the accuracy of model prediction,and the decomposition effect is better than that of the WT method.③ OOA,ROA,BES,and BWOA can effectively optimize GPR hyperparameters and improve GPR prediction performance.…”
    Get full text
    Article
  6. 1606

    A rapid detection method for egg quality using CARS and SSA⁃XGBoost improved by combining hyperspectral analysis by WANG Linyi, ZOU Qianying, SUN Qiang

    Published 2024-08-01
    “…Optimizing multiple hyperparameters of the XGBoost model through the Tartary Sea Salp Swarm Algorithm to improve the predictive performance of the XGBoost model. …”
    Get full text
    Article
  7. 1607
  8. 1608

    Particle Swarm Optimization Based Optimal Design of Six-Phase Induction Motor for Electric Propulsion of Submarines by Lelisa Wogi, Amruth Thelkar, Tesfabirhan Shoga Tahiro, Tadele Ayana, Shabana Urooj, Samia Larguech

    Published 2022-04-01
    “…This research presented a comparison of optimal model design of a six phase squirrel cage induction motor (IM) for electric propulsion by using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). …”
    Get full text
    Article
  9. 1609

    Prediction of Interest Rate Using Artificial Neural Network and Novel Meta-Heuristic Algorithms by Milad Shahvaroughi Farahani

    Published 2021-03-01
    “…The main goal of this article, as it is clear from the title, is the prediction of interest rate using ANN and improving the network using some novel heuristic algorithms such as Moth Flame Optimization algorithm (MFO), Chimp Optimization Algorithm (CHOA), Time-varying Correlation Particle Swarm Optimization algorithm (TVAC-PSO), etc. we used 17 variables such as oil price, gold coin price, house price, etc. as input variables. …”
    Get full text
    Article
  10. 1610

    Meta-transformer: leveraging metaheuristic algorithms for agricultural commodity price forecasting by G. H. Harish Nayak, Md. Wasi Alam, B. Samuel Naik, B. S. Varshini, G. Avinash, Rajeev Ranjan Kumar, Mrinmoy Ray, K. N. Singh

    Published 2025-05-01
    “…To address these challenges, this study proposes a novel framework that combines Transformer models with Metaheuristic Algorithms (MHAs), including the Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Particle Swarm Optimization (PSO) to enhance agricultural price forecasting accuracy. …”
    Get full text
    Article
  11. 1611
  12. 1612

    Prediction of Spatiotemporal Distribution of Electric Vehicle Charging Load Based on Multi-Source Information by WANG Qiang, BI Yuhao, GAO Chao, SONG Duoyang

    Published 2025-06-01
    “…Additionally, the Dijkstra algorithm is improved to plan charging paths more effectively by including real-time road condition data. …”
    Get full text
    Article
  13. 1613
  14. 1614
  15. 1615

    Nearest-Better Clustering-Based Memetic Algorithm for Berth Allocation and Crane Assignment Problem by Jiawei Wu

    Published 2025-01-01
    “…In this paper, we investigate the capability of differential evolution (DE) algorithms in solving BACAP by modeling berth allocation as a continuous optimization problem. …”
    Get full text
    Article
  16. 1616
  17. 1617

    Simulation and Optimization of Automated Guided Vehicle Charging Strategy for U-Shaped Automated Container Terminal Based on Improved Proximal Policy Optimization by Yongsheng Yang, Jianyi Liang, Junkai Feng

    Published 2024-11-01
    “…This paper proposes a simulation-based optimization method for AGV charging strategies in U-shaped ACTs based on an improved Proximal Policy Optimization (PPO) algorithm. …”
    Get full text
    Article
  18. 1618

    Multiobjective optimization of suspension bridges via coupled modeling and dual population multiobjective particle swarm optimization by Peiling Yang, Jianhua Deng, Anli Wang

    Published 2025-07-01
    “…The algorithm divides the population into two parts, using the non-dominated sorting genetic algorithm II (NSGA-II) and the multi-objective particle swarm optimization algorithm (MOPSO) for solving, with improvements to enhance the algorithm’s performance. …”
    Get full text
    Article
  19. 1619
  20. 1620