Showing 5,161 - 5,180 results of 7,145 for search '(( improve model optimization algorithm ) OR ( improved model optimization algorithm ))', query time: 0.41s Refine Results
  1. 5161

    Artificial Intelligence Meets Bioequivalence: Using Generative Adversarial Networks for Smarter, Smaller Trials by Anastasios Nikolopoulos, Vangelis D. Karalis

    Published 2025-05-01
    “…This study highlights the potential of WGANs to improve data augmentation and optimize subject recruitment in BE studies.…”
    Get full text
    Article
  2. 5162

    TAE Predict: An Ensemble Methodology for Multivariate Time Series Forecasting of Climate Variables in the Context of Climate Change by Juan Frausto Solís, Erick Estrada-Patiño, Mirna Ponce Flores, Juan Paulo Sánchez-Hernández, Guadalupe Castilla-Valdez, Javier González-Barbosa

    Published 2025-04-01
    “…Additionally, data remediation techniques improve data set quality. The ensemble combines Long Short-Term Memory neural networks, Random Forest regression, and Support Vector Machines, optimizing their contributions using heuristic algorithms such as Particle Swarm Optimization. …”
    Get full text
    Article
  3. 5163

    A Novel Local Binary Patterns-Based Approach and Proposed CNN Model to Diagnose Breast Cancer by Analyzing Histopathology Images by Mehmet Gul

    Published 2025-01-01
    “…The histopathology images improved with the QS-LBP method were then analyzed with the most commonly used Random Forest and Optimized Forest algorithms among machine learning algorithms. …”
    Get full text
    Article
  4. 5164

    Multi-Skilled Project Scheduling for High-End Equipment Development Considering Newcomer Cultivation and Duration Uncertainty by Yaohui Liu, Ronggui Ding, Shanshan Liu, Lei Wang

    Published 2025-06-01
    “…Therefore, we put forward an adaptive simulation–optimization approach featuring two-fold: a simulation module capable of dynamically adjusting sample sizes based on convergence feedback and evaluating solutions with improved efficiency and stable accuracy; a tailored non-dominated sorting genetic algorithm II (NSGA-II) with adaptive evolutionary operators that enhance search effectiveness and ensure the identification of a well-distributed Pareto front. …”
    Get full text
    Article
  5. 5165

    Development of a Weighted Average Ensemble Model for Predicting Officially Assessed Land Prices Using Grid Map Data and SHAP by Surin Im, Kangmin Kim, Geunhee Lee, Hoi-Jeong Lim

    Published 2025-01-01
    “…The model analyzes the impact of key variables through SHAP for improved interpretability. …”
    Get full text
    Article
  6. 5166

    A Multi-Spatial-Scale Ocean Sound Speed Profile Prediction Model Based on a Spatio-Temporal Attention Mechanism by Shuwen Wang, Ziyin Wu, Shuaidong Jia, Dineng Zhao, Jihong Shang, Mingwei Wang, Jieqiong Zhou, Xiaoming Qin

    Published 2025-04-01
    “…Nowadays, spatio-temporal series prediction algorithms are emerging, but their prediction accuracy requires improvement. …”
    Get full text
    Article
  7. 5167

    RETRACTED ARTICLE: Screening and identification of susceptibility genes for cervical cancer via bioinformatics analysis and the construction of an mitophagy-related genes diagnosti... by Zhang Zhang, Fangfang Chen, Xiaoxiao Deng

    Published 2024-09-01
    “…Furthermore, using machine learning algorithms, we constructed a clinical prognostic model and validated and optimized it via extensive clinical data. …”
    Get full text
    Article
  8. 5168

    Computed tomography-based radiomics model for predicting station 4 lymph node metastasis in non-small cell lung cancer by Yanru Kang, Mei Li, Xizi Xing, Kaixuan Qian, Hongxia Liu, Yafei Qi, Yanguo Liu, Yi Cui, Hua Zhang

    Published 2025-06-01
    “…This model serves as an effective auxiliary tool for clinical decision-making and has the potential to optimize treatment strategies and improve prognostic assessment for pN0-pN2 patients. …”
    Get full text
    Article
  9. 5169

    Pricing principles in the field of ready–made meal delivery: analysis of influence factors by K. V. Martynov

    Published 2025-04-01
    “…The conclusion reflects findings aimed at optimizing pricing decisions. The article will be useful for entrepreneurs, marketing and logistics specialists, as well as anyone interested in improving the efficiency of cost management and ensuring demand for the ready–made meal delivery service.…”
    Get full text
    Article
  10. 5170
  11. 5171

    Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique by Lijie Jiang, Qi Li, Huiqing Liao, Hourong Liu, Bowen Tan

    Published 2025-06-01
    “…Abstract This study develops and evaluates advanced hybrid machine learning models—ADA-ARD (AdaBoost on ARD Regression), ADA-BRR (AdaBoost on Bayesian Ridge Regression), and ADA-GPR (AdaBoost on Gaussian Process Regression)—optimized via the Black Widow Optimization Algorithm (BWOA) to predict the density of supercritical carbon dioxide (SC-CO2) and the solubility of niflumic acid, critical for pharmaceutical processes. …”
    Get full text
    Article
  12. 5172

    Multi-Objective Vibration Control of a Vehicle-Track-Bridge Coupled System Using Tuned Inerter Dampers Based on the FE-SEA Hybrid Method by Xingxing Hu, Qingsong Feng, Min Yang, Jian Liu

    Published 2025-08-01
    “…Using the vibration acceleration amplitudes of both the rail and track slab as dual control objectives, a multi-objective optimization model is established, and the TID’s optimal parameters are determined using a multi-objective genetic algorithm. …”
    Get full text
    Article
  13. 5173

    Node selection method in federated learning based on deep reinforcement learning by Wenchen HE, Shaoyong GUO, Xuesong QIU, Liandong CHEN, Suxiang ZHANG

    Published 2021-06-01
    “…To cope with the impact of different device computing capabilities and non-independent uniformly distributed data on federated learning performance, and to efficiently schedule terminal devices to complete model aggregation, a method of node selection based on deep reinforcement learning was proposed.It considered training quality and efficiency of heterogeneous terminal devices, and filtrate malicious nodes to guarantee higher model accuracy and shorter training delay of federated learning.Firstly, according to characteristics of model distributed training in federated learning, a node selection system model based on deep reinforcement learning was constructed.Secondly, considering such factors as device training delay, model transmission delay and accuracy, an optimization model of accuracy for node selection was proposed.Finally, the problem model was constructed as a Markov decision process and a node selection algorithm based on distributed proximal strategy optimization was designed to obtain a reasonable set of devices before each training iteration to complete model aggregation.Simulation results demonstrate that the proposed method significantly improves the accuracy and training speed of federated learning, and its convergence and robustness are also well.…”
    Get full text
    Article
  14. 5174

    Node selection method in federated learning based on deep reinforcement learning by Wenchen HE, Shaoyong GUO, Xuesong QIU, Liandong CHEN, Suxiang ZHANG

    Published 2021-06-01
    “…To cope with the impact of different device computing capabilities and non-independent uniformly distributed data on federated learning performance, and to efficiently schedule terminal devices to complete model aggregation, a method of node selection based on deep reinforcement learning was proposed.It considered training quality and efficiency of heterogeneous terminal devices, and filtrate malicious nodes to guarantee higher model accuracy and shorter training delay of federated learning.Firstly, according to characteristics of model distributed training in federated learning, a node selection system model based on deep reinforcement learning was constructed.Secondly, considering such factors as device training delay, model transmission delay and accuracy, an optimization model of accuracy for node selection was proposed.Finally, the problem model was constructed as a Markov decision process and a node selection algorithm based on distributed proximal strategy optimization was designed to obtain a reasonable set of devices before each training iteration to complete model aggregation.Simulation results demonstrate that the proposed method significantly improves the accuracy and training speed of federated learning, and its convergence and robustness are also well.…”
    Get full text
    Article
  15. 5175

    Minimizing Delay in UAV-Aided Federated Learning for IoT Applications With Straggling Devices by Mudassar Liaq, Waleed Ejaz

    Published 2024-01-01
    “…We then use the concurrent deterministic simplex with root relaxation algorithm. We also propose a deep reinforcement learning (DRL)-based solution to improve runtime complexity. …”
    Get full text
    Article
  16. 5176

    A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning by Yuzhu Yang, Hongda Li, Miao Sun, Xingyu Liu, Liying Cao

    Published 2024-09-01
    “…Then, the gray wolf optimization (GWO) algorithm is adopted to optimize a convolutional neural network (CNN), and a gated recurrent unit (GRU) and an attention mechanism are added to construct a hybrid neural network model (GWO–CNN–GRU–Attention). …”
    Get full text
    Article
  17. 5177

    Adaptive Temporal Reinforcement Learning for Mapping Complex Maritime Environmental State Spaces in Autonomous Ship Navigation by Ruolan Zhang, Xinyu Qin, Mingyang Pan, Shaoxi Li, Helong Shen

    Published 2025-03-01
    “…The model integrates an enhanced Proximal Policy Optimization (PPO) algorithm for efficient policy iteration optimization. …”
    Get full text
    Article
  18. 5178

    Large Language Model–Assisted Risk-of-Bias Assessment in Randomized Controlled Trials Using the Revised Risk-of-Bias Tool: Usability Study by Jiajie Huang, Honghao Lai, Weilong Zhao, Danni Xia, Chunyang Bai, Mingyao Sun, Jianing Liu, Jiayi Liu, Bei Pan, Jinhui Tian, Long Ge

    Published 2025-06-01
    “…When domain judgments were derived from LLM-generated signaling questions using the RoB2 algorithm rather than direct LLM domain judgments, accuracy improved substantially for Domain 2 (adhering; 55-95) and overall (adhering; 70-90). …”
    Get full text
    Article
  19. 5179

    Adaptive Quantum-Inspired Evolution for Denoising PCG Signals in Unseen Noise Conditions by Lubna Siddiqui, Ashish Mani, Jaspal Singh

    Published 2025-01-01
    “…The filter coefficients were optimised using the proposed QiEA with Adaptive Rotation Gate Operator (ARGO). The proposed algorithm accelerates convergence towards optimal solutions based on fitness feedback, improving filter optimisation while clamping rotation angles to maintain algorithm stability. …”
    Get full text
    Article
  20. 5180

    The development of an intelligent comprehensive detection instrument for circuit breakers in power systems and its key technologies by Weimin Guan, Han Hu, Chao Sun, Jie Ji

    Published 2025-05-01
    “…Additionally, this study optimizes the fault diagnosis algorithm, enhancing detection stability and robustness. …”
    Get full text
    Article