Search alternatives:
improve model » improved model (Expand Search)
Showing 5,601 - 5,620 results of 7,771 for search '(( improve model optimization algorithm ) OR ( improved (post OR most) optimization algorithm ))', query time: 0.64s Refine Results
  1. 5601

    A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning by Yuzhu Yang, Hongda Li, Miao Sun, Xingyu Liu, Liying Cao

    Published 2024-09-01
    “…Then, the gray wolf optimization (GWO) algorithm is adopted to optimize a convolutional neural network (CNN), and a gated recurrent unit (GRU) and an attention mechanism are added to construct a hybrid neural network model (GWO–CNN–GRU–Attention). …”
    Get full text
    Article
  2. 5602

    The development of an intelligent comprehensive detection instrument for circuit breakers in power systems and its key technologies by Weimin Guan, Han Hu, Chao Sun, Jie Ji

    Published 2025-05-01
    “…Additionally, this study optimizes the fault diagnosis algorithm, enhancing detection stability and robustness. …”
    Get full text
    Article
  3. 5603

    Small Scale Multi-Object Segmentation in Mid-Infrared Image Using the Image Timing Features–Gaussian Mixture Model and Convolutional-UNet by Meng Lv, Haoting Liu, Mengmeng Wang, Dongyang Wang, Haiguang Li, Xiaofei Lu, Zhenhui Guo, Qing Li

    Published 2025-05-01
    “…The approach integrates the Image Timing Features–Gaussian Mixture Model (ITF-GMM) and Convolutional-UNet (Con-UNet) to improve the accuracy of target detection. …”
    Get full text
    Article
  4. 5604

    A radiomics-clinical predictive model for difficult laparoscopic cholecystectomy based on preoperative CT imaging: a retrospective single center study by Rui-Tao Sun, Chang-Lei Li, Yu-Min Jiang, Ao-Yun Hao, Kui Liu, Kun Li, Bin Tan, Xiao-Nan Yang, Jiu-Fa Cui, Wen-Ye Bai, Wei-Yu Hu, Jing-Yu Cao, Chao Qu

    Published 2025-07-01
    “…A combination of radiomic and clinical features was selected using the Boruta-LASSO algorithm. Predictive models were constructed using six machine learning algorithms and validated, with model performance evaluated based on the AUC, accuracy, Brier score, and DCA to identify the optimal model. …”
    Get full text
    Article
  5. 5605

    Research on the prediction of blasting fragmentation in open-pit coal mines based on KPCA-BAS-BP by Shuang Liu, Enxiang Qu, Chun LV, Xueyuan Zhang

    Published 2024-10-01
    “…Compared with the unoptimized BP neural network and the BP neural network optimized by the artificial bee colony algorithm (ABC) model, this model has higher prediction accuracy and is more suitable for predicting the blasting block size of open-pit coal mines, it provides a new method for predicting the fragmentation of blasting under the influence of multiple factors, filling the gap in related theoretical research, and has certain practical application value.…”
    Get full text
    Article
  6. 5606

    Characteristics and prediction methods of coal spontaneous combustion for deep coal mining in the Ximeng mining area by Li MA, Wenbo GAO, Longlong TUO, Pengyu ZHANG, Zhou ZHENG, Ruizhi GUO

    Published 2025-02-01
    “…Then, the hyperparameters of the random forest (RF) model were optimized using the crested porcupine optimizer (CPO) algorithm. …”
    Get full text
    Article
  7. 5607
  8. 5608

    Detection of Substation Pollution in District Heating and Cooling Systems: A Comprehensive Comparative Analysis of Machine Learning and Artificial Neural Network Models by Emrah ASLAN, Yıldırım ÖZÜPAK

    Published 2024-11-01
    “…In order to improve the performance of the machine learning models, hyperparameter tuning was performed by Grid Search Optimization method. …”
    Get full text
    Article
  9. 5609

    Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique by Lijie Jiang, Qi Li, Huiqing Liao, Hourong Liu, Bowen Tan

    Published 2025-06-01
    “…Abstract This study develops and evaluates advanced hybrid machine learning models—ADA-ARD (AdaBoost on ARD Regression), ADA-BRR (AdaBoost on Bayesian Ridge Regression), and ADA-GPR (AdaBoost on Gaussian Process Regression)—optimized via the Black Widow Optimization Algorithm (BWOA) to predict the density of supercritical carbon dioxide (SC-CO2) and the solubility of niflumic acid, critical for pharmaceutical processes. …”
    Get full text
    Article
  10. 5610

    Multi-Scale Spatiotemporal Feature Enhancement and Recursive Motion Compensation for Satellite Video Geographic Registration by Yu Geng, Jingguo Lv, Shuwei Huang, Boyu Wang

    Published 2025-04-01
    “…Based on the SuperGlue matching algorithm, the method achieves automatic matching of inter-frame image points by introducing the multi-scale dilated attention (MSDA) to enhance the feature extraction and adopting a joint multi-frame optimization strategy (MFMO), designing a recursive motion compensation model (RMCM) to eliminate the cumulative effect of the orbit error and improve the accuracy of the inter-frame image point matching, and using a rational function model to establish the geometrical mapping between the video and the ground points to realize the georeferencing of satellite video. …”
    Get full text
    Article
  11. 5611

    Node selection method in federated learning based on deep reinforcement learning by Wenchen HE, Shaoyong GUO, Xuesong QIU, Liandong CHEN, Suxiang ZHANG

    Published 2021-06-01
    “…To cope with the impact of different device computing capabilities and non-independent uniformly distributed data on federated learning performance, and to efficiently schedule terminal devices to complete model aggregation, a method of node selection based on deep reinforcement learning was proposed.It considered training quality and efficiency of heterogeneous terminal devices, and filtrate malicious nodes to guarantee higher model accuracy and shorter training delay of federated learning.Firstly, according to characteristics of model distributed training in federated learning, a node selection system model based on deep reinforcement learning was constructed.Secondly, considering such factors as device training delay, model transmission delay and accuracy, an optimization model of accuracy for node selection was proposed.Finally, the problem model was constructed as a Markov decision process and a node selection algorithm based on distributed proximal strategy optimization was designed to obtain a reasonable set of devices before each training iteration to complete model aggregation.Simulation results demonstrate that the proposed method significantly improves the accuracy and training speed of federated learning, and its convergence and robustness are also well.…”
    Get full text
    Article
  12. 5612

    Node selection method in federated learning based on deep reinforcement learning by Wenchen HE, Shaoyong GUO, Xuesong QIU, Liandong CHEN, Suxiang ZHANG

    Published 2021-06-01
    “…To cope with the impact of different device computing capabilities and non-independent uniformly distributed data on federated learning performance, and to efficiently schedule terminal devices to complete model aggregation, a method of node selection based on deep reinforcement learning was proposed.It considered training quality and efficiency of heterogeneous terminal devices, and filtrate malicious nodes to guarantee higher model accuracy and shorter training delay of federated learning.Firstly, according to characteristics of model distributed training in federated learning, a node selection system model based on deep reinforcement learning was constructed.Secondly, considering such factors as device training delay, model transmission delay and accuracy, an optimization model of accuracy for node selection was proposed.Finally, the problem model was constructed as a Markov decision process and a node selection algorithm based on distributed proximal strategy optimization was designed to obtain a reasonable set of devices before each training iteration to complete model aggregation.Simulation results demonstrate that the proposed method significantly improves the accuracy and training speed of federated learning, and its convergence and robustness are also well.…”
    Get full text
    Article
  13. 5613

    Adaptive Temporal Reinforcement Learning for Mapping Complex Maritime Environmental State Spaces in Autonomous Ship Navigation by Ruolan Zhang, Xinyu Qin, Mingyang Pan, Shaoxi Li, Helong Shen

    Published 2025-03-01
    “…The model integrates an enhanced Proximal Policy Optimization (PPO) algorithm for efficient policy iteration optimization. …”
    Get full text
    Article
  14. 5614

    Development of a Weighted Average Ensemble Model for Predicting Officially Assessed Land Prices Using Grid Map Data and SHAP by Surin Im, Kangmin Kim, Geunhee Lee, Hoi-Jeong Lim

    Published 2025-01-01
    “…The model analyzes the impact of key variables through SHAP for improved interpretability. …”
    Get full text
    Article
  15. 5615

    Multi-Skilled Project Scheduling for High-End Equipment Development Considering Newcomer Cultivation and Duration Uncertainty by Yaohui Liu, Ronggui Ding, Shanshan Liu, Lei Wang

    Published 2025-06-01
    “…Therefore, we put forward an adaptive simulation–optimization approach featuring two-fold: a simulation module capable of dynamically adjusting sample sizes based on convergence feedback and evaluating solutions with improved efficiency and stable accuracy; a tailored non-dominated sorting genetic algorithm II (NSGA-II) with adaptive evolutionary operators that enhance search effectiveness and ensure the identification of a well-distributed Pareto front. …”
    Get full text
    Article
  16. 5616
  17. 5617

    Research on Dynamic Performance of Autonomous-rail Rapid Tram by ZHONG Hanwen, LI Xiaoguang, XIAO Lei, YANG Yong, ZHANG Chenlin, HUANG Ruipeng, YUAN Xiwen

    Published 2020-01-01
    “…Through detailed Simpack dynamic model, the simulation research was carried out to provide guidance for optimization and improvement of vehicle dynamic performance. …”
    Get full text
    Article
  18. 5618

    Enhancing Aerosol Vertical Distribution Retrieval With Combined LSTM and Transformer Model From OCO-2 O2 A-Band Observations by YuXuan Wang, RuFang Ti, ZhenHai Liu, Xiao Liu, HaiXiao Yu, YiChen Wei, YiZhe Fan, YuYao Wang, HongLian Huang, XiaoBing Sun

    Published 2025-01-01
    “…Furthermore, a physics-based, information-driven band selection method was developed to simplify input data and reduce complexity. To enhance the algorithm's applicability, the model was applied across the entire African continent and adjacent water bodies. …”
    Get full text
    Article
  19. 5619

    Study on debris flow vulnerability of ensemble learning model based on spy technology A case study of upper Minjiang river basin by Yutao Chen, Ning Li, Fucheng Xing, Han Xiang, Zilong Chen

    Published 2025-07-01
    “…In this paper, a debris flow susceptibility assessment model is constructed based on RF (Random Forest) and XGBoost (Extreme Gradient Boosting) models with Stacking ensmble learning method, and SPY technique is introduced to optimize the negative sample selection. …”
    Get full text
    Article
  20. 5620

    PolSAR Forest Height Estimation Enhancement With Polarimetric Rotation Domain Features and Multivariate Sensitivity Analysis by Fu-Gen Jiang, Ming-Dian Li, Si-Wei Chen

    Published 2025-01-01
    “…Then, we propose a Bayesian-optimized ensemble learning algorithm to improve the accuracy of forest height estimation. …”
    Get full text
    Article