Search alternatives:
fast research » pain research (Expand Search)
main research » pain research (Expand Search)
tree » three (Expand Search)
fast research » pain research (Expand Search)
main research » pain research (Expand Search)
tree » three (Expand Search)
-
21
Proposal for Using AI to Assess Clinical Data Integrity and Generate Metadata: Algorithm Development and Validation
Published 2025-06-01“…Logistic regression, k-nearest neighbors, a naive bayes classifier, a decision tree classifier, a random forest classifier, extreme gradient boosting (XGB), and support vector machines (SVM) were selected as machine learning algorithms. …”
Get full text
Article -
22
-
23
Rapid diagnosis of power battery faults in new energy vehicles based on improved boosting algorithm and big data
Published 2024-12-01“…Subsequently, the importance of indicators in the data was analyzed using the Random Forest algorithm (RF). Finally, three improved Boosting algorithms were proposed, namely Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting Tree (XGBoost), and Gradient Boosting Decision Tree (CatBoost). …”
Get full text
Article -
24
Wavelet-Based ensembled intelligent technique for a better quality of fault detection and classification in AC microgrids
Published 2024-10-01“…The hyperparameters of the EBDT are optimized using a random search algorithm to enhance robustness in fault classification. …”
Get full text
Article -
25
Research and predictive analysis of pyrolysis characteristics of multi-source organic solid wastes
Published 2024-10-01Get full text
Article -
26
-
27
Proposing a framework for body mass prediction with point clouds: A study applied in typical swine pen environments
Published 2025-12-01“…Challenges persist in implementing these techniques in pens with a large number of animals, especially in extracting physical body characteristics from images in a production environment. In this context, the main objective of this research is to investigate a novel framework comprising effective algorithms for feature extraction, attribute selection, hyperparameter optimization, and prediction modelling, using point clouds collected from production animals (growing and finishing pigs). …”
Get full text
Article -
28
Landslide susceptibility evaluation and determination of critical influencing factors in eastern Sichuan mountainous area, China
Published 2024-12-01“…These factors include geological, topographic and vegetation factors, as well as four new vegetation factors: stock volume, stand density, average tree age, and stand types. Furthermore, we employed SHAP algorithm and Structural Equation Models to quantify the relative importance and explanatory power of these factors on shallow landslide susceptibility and to clarify the interaction mechanisms among various factors in Huaying Mountain. …”
Get full text
Article -
29
A systematic mapping to investigate the application of machine learning techniques in requirement engineering activities
Published 2024-12-01“…The results show that the scientific community used 57 algorithms. Among those algorithms, researchers mostly used the five following ML algorithms in RE activities: Decision Tree, Support Vector Machine, Naïve Bayes, K‐nearest neighbour Classifier, and Random Forest. …”
Get full text
Article -
30
-
31
-
32
Enhancing Privacy in IoT Networks: A Comparative Analysis of Classification and Defense Methods
Published 2025-01-01“…Additionally, the Decision Tree (DT), Random Forest (RF), k-Nearest Neighbors (kNN), and GRU classification algorithms are also evaluated and compared with the XGBoost and LSTM classifiers for the proposed attack model. …”
Get full text
Article -
33
-
34
Machine Learning in the National Economy
Published 2025-07-01“…The main methods include an analysis of scientific literature, statistical data analysis, modeling using machine learning algorithms, and practical implementation of economic models with programming languages such as Python and machine learning libraries.To analyze economic data, methods such as linear regression, decision trees, and neural networks were selected, as they effectively predict changes in key macroeconomic indexes such as GDP, inflation, exchange rates, and unemployment levels. …”
Get full text
Article -
35
Enhancing Software Defect Prediction Using Ensemble Techniques and Diverse Machine Learning Paradigms
Published 2025-07-01“…In supervised learning, we mainly experimented with several algorithms, including random forest, k-nearest neighbors, support vector machines, logistic regression, gradient boosting, AdaBoost classifier, quadratic discriminant analysis, Gaussian training, decision tree, passive aggressive, and ridge classifier. …”
Get full text
Article -
36
House Price Prediction of Real Time Data (DHA Defence) Karachi Using Machine Learning
Published 2022-12-01“…It is one of the main contribution of the work is that through this the house prediction model based on DHA Karachi data is developed and as per best of our knowledge till today there is no prediction of housing for the country’s important has been developed. has This research paper mainly focuses on real time Defense Housing Authority (DHA) Karachi data, applying different regression algorithms like Decision tree, Random forest and linear regression to find the sales price prediction of the house and compare the performance of these models. …”
Get full text
Article -
37
Comparison of machine learning models for coronavirus prediction
Published 2022-03-01Get full text
Article -
38
-
39
A Comparative Study of Loan Approval Prediction Using Machine Learning Methods
Published 2024-06-01“…Machine learning models can automate this process and make the lending process faster and more efficient. In this context, the main objective of this research is to develop models for loan approval prediction using machine learning algorithms such as Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree, and Random Forest and to compare their performances. …”
Get full text
Article -
40
Machine Learning Model for Detecting Attack in Service Supply Chain
Published 2025-06-01“…The study employs machine learning methods to increase the detection of service supply chain attacks, including Decision Trees, Random Forest, and XGBoost algorithms. These models were assessed in accordance with accuracy, precision, recall, and the F1-score, with Random Forest topping the list with an accuracy of 96.1%, followed by Decision Trees with 95.0% accuracy and XGBoost with 94.7% accuracy. …”
Get full text
Article