Search alternatives:
fact research » pain research (Expand Search)
tree » three (Expand Search)
Showing 1 - 12 results of 12 for search '(( fact research random tree algorithm ) OR ( face search random tree algorithm ))', query time: 0.26s Refine Results
  1. 1
  2. 2

    Securing IoT Communications via Anomaly Traffic Detection: Synergy of Genetic Algorithm and Ensemble Method by Behnam Seyedi, Octavian Postolache

    Published 2025-06-01
    “…In the final phase, an ensemble classifier combines the strengths of the Decision Tree, Random Forest, and XGBoost algorithms to achieve the accurate and robust detection of anomalous behaviors. …”
    Get full text
    Article
  3. 3
  4. 4

    Improving Surgical Site Infection Prediction Using Machine Learning: Addressing Challenges of Highly Imbalanced Data by Salha Al-Ahmari, Farrukh Nadeem

    Published 2025-02-01
    “…Seven machine learning algorithms were created and tested: Decision Tree (DT), Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Stochastic Gradient Boosting (SGB), and K-Nearest Neighbors (KNN). …”
    Get full text
    Article
  5. 5

    Casualty Analysis of the Drivers in Traffic Accidents in Turkey: A CHAID Decision Tree Model by Zeliha Cagla Kuyumcu, Hakan Aslan, Nilufer Yurtay

    Published 2024-12-01
    “…The difference between the success of the models with regard to accuracy obtained through dominant and investigated factors is only 5.0%. Random Forests, Naïve Bayes, and CHAID (Chi-squared Automatic Interaction Detection) models were established and compared as decision tree algorithms. …”
    Get full text
    Article
  6. 6

    Path planning algorithm based on the improved Informed-RRT* using the sea-horse optimizer by YAN Guiseng, YANG Jie

    Published 2025-02-01
    “…ObjectiveIn order to solve the problems of random sampling, inefficient search, and difficulty in providing optimal paths in complex environments faced by traditional Informed-RRT* algorithms, an improved Informed-RRT* path planning algorithm based on the sea-horse optimizer (SHO) was proposed.MethodsThis algorithm combined the strengths of Informed-RRT* and SHO. …”
    Get full text
    Article
  7. 7
  8. 8
  9. 9

    Reducing bias in coronary heart disease prediction using Smote-ENN and PCA. by Xinyi Wei, Boyu Shi

    Published 2025-01-01
    “…To address the data imbalance issue, SMOTE-ENN is utilized, and five machine learning algorithms-Decision Trees, KNN, SVM, XGBoost, and Random Forest-are applied for classification tasks. …”
    Get full text
    Article
  10. 10

    Advancing malware imagery classification with explainable deep learning: A state-of-the-art approach using SHAP, LIME and Grad-CAM. by Sadia Nazim, Muhammad Mansoor Alam, Syed Safdar Rizvi, Jawahir Che Mustapha, Syed Shujaa Hussain, Mazliham Mohd Suud

    Published 2025-01-01
    “…The trust of users in the models used for cybersecurity would be undermined by the ambiguous and indefinable nature of existing AI-based methods, specifically in light of the more complicated and diverse nature of cyberattacks in modern times. The present research addresses the comparative analysis of an ensemble deep neural network (DNNW) with different ensemble techniques like RUSBoost, Random Forest, Subspace, AdaBoost, and BagTree for the best prediction against imagery malware data. …”
    Get full text
    Article
  11. 11
  12. 12

    Comparative study on Functional Machine learning and Statistical Methods in Disease detection and Weed Removal for Enhanced Agricultural Yield by Sudha D., Menaga D.

    Published 2023-01-01
    “…The technology has developed to rectify the problems using some machine learning algorithms like Random Forest algorithms, Decision trees, Naïve Bayes, KNN, K-Means clustering, Support vector machines. …”
    Get full text
    Article