Search alternatives:
source » sources (Expand Search)
resource » resources (Expand Search)
resourcess » resourcesss (Expand Search)
Showing 341 - 360 results of 1,810 for search '((\ source detection functions\ ) OR (( resource OR resourcess) detection function\ ))', query time: 0.30s Refine Results
  1. 341

    MSSA: multi-stage semantic-aware neural network for binary code similarity detection by Bangrui Wan, Jianjun Zhou, Ying Wang, Feng Chen, Ying Qian

    Published 2025-01-01
    “…Binary code similarity detection (BCSD) aims to identify whether a pair of binary code snippets is similar, which is widely used for tasks such as malware analysis, patch analysis, and clone detection. …”
    Get full text
    Article
  2. 342
  3. 343

    App-DDoS detection method using partial binary tree based SVM algorithm by Bin ZHANG, Zihao LIU, Shuqin DONG, Lixun LI

    Published 2018-03-01
    “…As it ignored the detection of ramp-up and pulsing type of application layer DDoS (App-DDoS) attacks in existing flow-based App-DDoS detection methods,an effective detection method for multi-type App-DDoS was proposed.Firstly,in order to fast count the number of HTTP GET for users and further support the calculation of feature parameters applied in detection method,the indexes of source IP address in multiple time windows were constructed by the approach of Hash function.Then the feature parameters by combining SVM classifiers with the structure of partial binary tree were trained hierarchically,and the App-DDoS detection method was proposed with the idea of traversing binary tree and feedback learning to distinguish non-burst normal flow,burst normal flow and multi-type App-DDoS flows.The experimental results show that compared with the conventional SVM-based and naïve-Bayes-based detection methods,the proposed method has more excellent detection performance and can distinguish specific App-DDoS types through subdividing attack types and training detection model layer by layer.…”
    Get full text
    Article
  4. 344

    Employing SAE-GRU deep learning for scalable botnet detection in smart city infrastructure by Usman Tariq, Tariq Ahamed Ahanger

    Published 2025-04-01
    “…These findings enhance the understanding of IoT security by offering a scalable and resource-efficient solution for botnet detection. The functional investigation establishes a foundation for future research into adaptive security mechanisms that address emerging threats and highlights the practical potential of advanced deep learning techniques in safeguarding next-generation smart city ecosystems.…”
    Get full text
    Article
  5. 345

    A Lightweight Network for UAV Multi-Scale Feature Fusion-Based Object Detection by Sheng Deng, Yaping Wan

    Published 2025-03-01
    “…To tackle the issues of small target sizes, missed detections, and false alarms in aerial drone imagery, alongside the constraints posed by limited hardware resources during model deployment, a streamlined object detection approach is proposed to enhance the performance of YOLOv8s. …”
    Get full text
    Article
  6. 346

    A Contrast-Enhanced Approach for Aerial Moving Target Detection Based on Distributed Satellites by Yu Li, Hansheng Su, Jinming Chen, Weiwei Wang, Yingbin Wang, Chongdi Duan, Anhong Chen

    Published 2025-03-01
    “…This method compensates for the range difference rather than the target range. In the detection period, we develop two weighting functions, i.e., the Doppler frequency rate (DFR) variance function and smooth spatial filtering function, to extract prominent areas and make efficient detection, respectively. …”
    Get full text
    Article
  7. 347
  8. 348
  9. 349

    GESC-YOLO: Improved Lightweight Printed Circuit Board Defect Detection Based Algorithm by Xiangqiang Kong, Guangmin Liu, Yanchen Gao

    Published 2025-05-01
    “…Printed circuit boards (PCBs) are an indispensable part of electronic products, and their quality is crucial to the operational integrity and functional reliability of these products. Currently, existing PCB defect detection models are beset with issues such as excessive model size and parameter complexity, rendering them ill-equipped to meet the requirements for lightweight deployment on mobile devices. …”
    Get full text
    Article
  10. 350

    Self-Powered Microsystem for Ultra-Fast Crash Detection via Prestressed Triboelectric Sensing by Yiqun Wang, Yuhan Wang, Xinzhi Liu, Xiaofeng Wang, Keren Dai, Zheng You

    Published 2025-01-01
    “…We further developed a self-powered, compact (<4.5 cm3) microsystem that integrates the shock sensor, a signal processing module, airbag triggering circuitry, and a high-g-resistant supercapacitor as a backup power source. The microsystem achieves ultra-fast shock detection and airbag activation with a delay of less than 0.2 ms. …”
    Get full text
    Article
  11. 351

    RSWD-YOLO: A Walnut Detection Method Based on UAV Remote Sensing Images by Yansong Wang, Xuanxi Yang, Haoyu Wang, Huihua Wang, Zaiqing Chen, Lijun Yun

    Published 2025-04-01
    “…Furthermore, to optimize the detection performance under hardware resource constraints, we apply knowledge distillation to RSWD-YOLO, thereby further improving the detection accuracy. …”
    Get full text
    Article
  12. 352
  13. 353

    A lightweight UAV target detection algorithm based on improved YOLOv8s model by Fubao Ma, Ran Zhang, Bowen Zhu, Xirui Yang

    Published 2025-05-01
    “…Furthermore, the original loss function is replaced with SIoU to enhance detection accuracy. …”
    Get full text
    Article
  14. 354
  15. 355

    YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles by Shimin Weng, Han Wang, Jiashu Wang, Changming Xu, Ende Zhang

    Published 2025-07-01
    “…Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. …”
    Get full text
    Article
  16. 356

    Research on underwater disease target detection method of inland waterway based on deep learning by Tao Yu, Yu Xie, Jinsong Luo, Wei Zhu, Jie Liu

    Published 2025-04-01
    “…Abstract Aiming at the problems of low detection accuracy and poor generalization ability of underwater disease targets in inland waterways, an underwater disease target detection algorithm for inland waterways based on improved YOLOv5 is designed, which is denoted as YOLOv5-GBCE. …”
    Get full text
    Article
  17. 357
  18. 358

    Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers by Pavel Lyakhov, Denis Butusov, Vadim Pismennyy, Ruslan Abdulkadirov, Nikolay Nagornov, Valerii Ostrovskii, Diana Kalita

    Published 2025-06-01
    “…The developed algorithms for training NN architectures improved the accuracy of drone detection by achieving the global extremum of the loss function in fewer epochs using positive–negative pulse-based optimization algorithms. …”
    Get full text
    Article
  19. 359

    YOLOv9-GDV: A Power Pylon Detection Model for Remote Sensing Images by Ke Zhang, Ningxuan Zhang, Chaojun Shi, Qiaochu Lu, Xian Zheng, Yujie Cao, Xiaoyun Zhang, Jiyuan Yang

    Published 2025-06-01
    “…Finally, the Variable Minimum Point Distance Intersection over Union (VMPDIoU) loss is proposed to optimize the model’s loss function. This method employs variable input parameters to directly calculate key point distances between predicted and ground-truth boxes, more accurately reflecting positional differences between detection results and reference targets, thus effectively improving the model’s mean Average Precision (mAP). …”
    Get full text
    Article
  20. 360

    Classification of SERS spectra for agrochemical detection using a neural network with engineered features by Mateo Frausto-Avila, Monserrat Ochoa-Elias, Jose Pablo Manriquez-Amavizca, María del Carmen González-López, Gonzalo Ramírez-García, Mario Alan Quiroz-Juárez

    Published 2025-01-01
    “…Surface-Enhanced Raman Spectroscopy (SERS) substrates offer a promising solution for the sensitive and specific detection of agrochemicals, enabling timely interventions to mitigate their harmful effects on humans and ecosystems. …”
    Get full text
    Article