Showing 1,221 - 1,240 results of 1,420 for search '(((model OR (more OR more)) OR more) OR made) screening algorithm', query time: 0.15s Refine Results
  1. 1221

    Multi-Target Mechanism of Compound Qingdai Capsule for Treatment of Psoriasis: Multi-Omics Analysis and Experimental Verification by Qiao Y, Li C, Chen C, Wu P, Yang Y, Xie M, Liu N, Gu J

    Published 2025-06-01
    “…CQC ingredients-targets network was constructed using these ingredients and their targets. Screening of CQC anti-psoriasis core targets using machine learning algorithm. …”
    Get full text
    Article
  2. 1222

    Development of an immune-related gene signature applying Ridge method for improving immunotherapy responses and clinical outcomes in lung adenocarcinoma by Zhen Chen, Yongjun Zhang

    Published 2025-05-01
    “…Considering the critical role of tumor infiltrating lymphocytes in effective immunotherapy, this study was designed to screen molecular markers related to tumor infiltrating cells in LUAD, aiming to improve immunotherapy response during LUAD therapy. …”
    Get full text
    Article
  3. 1223

    Unveiling diagnostic biomarkers and therapeutic targets in lung adenocarcinoma using bioinformatics and experimental validation by Sixuan Wu, Yuanbin Tang, Qihong Pan, Yaqin Zheng, Yeru Tan, Junfan Pan, Yuehua Li

    Published 2025-07-01
    “…In addition, a machine learning model constructed based on Stepglm[backward] with the random forest algorithm achieved the highest C-index (0.999) and screened eight core genes, among which ST14 was noted for its excellent predictive ability. …”
    Get full text
    Article
  4. 1224

    Exhaled volatile organic compounds as novel biomarkers for early detection of COPD, asthma, and PRISm: a cross-sectional study by Jiaxin Tian, Qiurui Zhang, Minhua Peng, Leixin Guo, Qianqian Zhao, Wei Lin, Sitong Chen, Xuefei Liu, Simin Xie, Wenxin Wu, Yijie Li, Junqi Wang, Jin Cao, Ping Wang, Min Zhou

    Published 2025-05-01
    “…Subsequently, classification models were established by machine learning algorithms, based on these VOC markers along with baseline characteristics. …”
    Get full text
    Article
  5. 1225
  6. 1226

    Cell death-related signature genes: risk-predictive biomarkers and potential therapeutic targets in severe sepsis by Yanan Li, Yuqiu Tan, Zengwen Ma, Zengwen Ma, Weiwei Qian, Weiwei Qian

    Published 2025-05-01
    “…Further combining cell death-related gene screening and four machine learning algorithms (including LASSO-logistic, Gradient Boosting Machine, Random Forest and xGBoost), nine SeALAR-characterized cell death genes (SeDGs) were screened and a risk prediction model based on SeDGs was constructed that demonstrated good prediction performance. …”
    Get full text
    Article
  7. 1227

    Opening closed doors: using machine learning to explore factors associated with marital sexual violence in a cross-sectional study from India by Anita Raj, Abhishek Singh, Nandita Bhan, Lotus McDougal, Nabamallika Dehingia, Julian McAuley

    Published 2021-12-01
    “…Analyses included iterative thematic analysis (L-1 regularised regression followed by iterative qualitative thematic coding of L-2 regularised regression results) and neural network modelling.Outcome measure Participants reported their experiences of sexual violence perpetrated by their current (or most recent) husband in the previous 12 months. …”
    Get full text
    Article
  8. 1228

    Improving the accuracy of remotely sensed TSS and turbidity using quality enhanced water reflectance by a statistical resampling technique by Kunwar Abhishek Singh, Dongryeol Ryu, Meenakshi Arora, Manoj Kumar Tiwari, Bhabagrahi Sahoo

    Published 2025-08-01
    “…The statistical resampling approach based on GMM was applied to Sentinel-2 (S2) imagery to produce input to Machine Learning (ML) algorithms to retrieve the TSS and turbidity for target river sections. …”
    Get full text
    Article
  9. 1229

    Characterization and stratification of risk factors of stroke in people living with HIV: A theory-informed systematic review by Martins Nweke, Nombeko Mshunqane

    Published 2025-05-01
    “…Predictive and preventative models should target factors with a high causality index and low investigative costs. …”
    Get full text
    Article
  10. 1230

    A Deep Learning Method for Pneumoconiosis Staging on Chest X-Ray Under Label Noise by Wenjian Sun, Dongsheng Wu, Jiang Shen, Yang Luo, Hao Wang, Li Min, Chunbo Luo

    Published 2025-01-01
    “…The ambiguous properties of small opacities in pneumoconiosis chest radiographs can cause diagnostic drift, which in turn leads to the presence of noisy labels in the datasets collected from hospitals that can negatively impact the generalization of deep learning models. To tackle this issue, we propose COFINE, a novel coarse-to-fine noise-tolerant deep learning method for the staging of pneumoconiosis chest radiographs, which comprises two procedures: coarse screening and fine learning. …”
    Get full text
    Article
  11. 1231
  12. 1232

    Spatial and temporal distribution patterns and factors influencing hepatitis B in China: a geo-epidemiological study by Kang Fang, Na Cheng, Chuang Nie, Wentao Song, Yunkang Zhao, Jie Pan, Qi Yin, Jiwei Zheng, Qinglin Chen, Tianxin Xiang

    Published 2025-04-01
    “…Spatial autocorrelation analysis and spatiotemporal scanning were used to analyze the spatiotemporal distribution characteristics. The random forest algorithm was used to screen the potential influencing factors. …”
    Get full text
    Article
  13. 1233

    Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders by Ziqin Yang, Ziqin Yang, Nicole A. Teaney, Nicole A. Teaney, Elizabeth D. Buttermore, Elizabeth D. Buttermore, Elizabeth D. Buttermore, Mustafa Sahin, Mustafa Sahin, Mustafa Sahin, Wardiya Afshar-Saber, Wardiya Afshar-Saber

    Published 2025-01-01
    “…In this review, we compare two-dimensional and three-dimensional hiPSC formats for disease modeling, discuss the applications of functional assays, and offer insights on incorporating ML into hiPSC-based NDD research and drug screening.…”
    Get full text
    Article
  14. 1234

    Identification and verification of XDH genes in ROS induced oxidative stress response of osteoarthritis based on bioinformatics analysis by Chengze Qiu, Zhiyong Zhang, Haocheng Wang, Na Liu, Ruixin Li, Zhiheng Wei, Benjie Wang, Nan Zhang

    Published 2025-08-01
    “…An artificial neural network model was constructed for the hub genes, and immune analysis was conducted using the ssGSEA algorithm. …”
    Get full text
    Article
  15. 1235

    Uso de inteligencia artificial para predecir complicaciones en cirugías de columna toracolumbar degenerativa: revisión sistemática by G. Ricciardi, J.I. Cirillo Totera, R. Pons Belmonte, L. Romero Valverde, F. López Muñoz, A. Manríquez Díaz

    Published 2025-09-01
    “…Due to heterogeneity in samples, outcomes of interest, and algorithm evaluation metrics, a meta-analysis was not performed. …”
    Get full text
    Article
  16. 1236

    [Translated article] Use of artificial intelligence to predict complications in degenerative thoracolumbar spine surgery: A systematic review by G. Ricciardi, J.I. Cirillo Totera, R. Pons Belmonte, L. Romero Valverde, F. López Muñoz, A. Manríquez Díaz

    Published 2025-09-01
    “…In 5 (41.6%) articles, the effectiveness of artificial intelligence predictive models was compared with conventional techniques. …”
    Get full text
    Article
  17. 1237

    Exploring pesticide risk in autism via integrative machine learning and network toxicology by Ling Qi, Jingran Yang, Qiao Niu, Jianan Li

    Published 2025-06-01
    “…Each combination of 1–23 targets was used to construct predictive models using eight different machine learning algorithms. …”
    Get full text
    Article
  18. 1238

    Machine learning-derived prognostic signature integrating programmed cell death and mitochondrial function in renal clear cell carcinoma: identification of PIF1 as a novel target by Guangyang Cheng, Zhaokai Zhou, Shiqi Li, Fu Peng, Shuai Yang, Chuanchuan Ren

    Published 2025-02-01
    “…Finally, a novel RCC prognostic marker PIF1 was identified in model genes. The knockdown of PIF1 in vitro inhibited the progression of renal carcinoma cells. …”
    Get full text
    Article
  19. 1239
  20. 1240

    Signatures of Six Autophagy‐Related Genes as Diagnostic Markers of Thyroid‐Associated Ophthalmopathy and Their Correlation With Immune Infiltration by Qintao Ma, Yuanping Hai, Jie Shen

    Published 2024-12-01
    “…The combined six‐gene model also showed good diagnostic efficacy (AUC = 0.948). …”
    Get full text
    Article